Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 117303    DOI: 10.1088/1674-1056/ab470f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure

Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门)
School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Hysteresis current-voltage (I-V) characteristics are often observed in a highly non-ideal (n>2) as-deposited nickel (Ni)/4H-SiC Schottky contact. However, we find that this kind of hysteresis effect also exists in an as-deposited Ni/n-type 4H-SiC Schottky structure even if the ideality factor (n) is less than 1.2. The hysteresis I-V characteristics is studied in detail in this paper by using the various measurements including the hysteresis I-V, sequential I-V sweeping, cycle I-V, constant reverse voltage stress (CRVS). The results show that the hysteresis I-V characteristics are strongly dependent on the sweeping voltage and post-deposition annealing (PDA). The high temperature PDA (800℃) can completely eliminate this hysteresis. Meanwhile, the magnitude of the hysteresis effect is shown to decrease in the sequential I-V sweeping measurement, which is attributed to the fact that the electrons tunnel from the 4H-SiC to the localized states at the Ni/n-type 4H-SiC interface. It is found that the application of the reverse bias stress has little effect on the emission of those trapped electrons. And a fraction of the trapped electrons will be gradually released with the time under the condition of air and with no bias. The possible physical charging mechanism of the interface traps is discussed on the basis of the experimental findings.
Keywords:  4H-SiC      Schottky      hysteresis I-V      Schottky barrier height  
Received:  12 August 2019      Revised:  16 September 2019      Accepted manuscript online: 
PACS:  73.40.Ns (Metal-nonmetal contacts)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61804118, 61774117, and 61774119), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 20101185935 and 20106186647), the National Key Basic Research Program of China (Grant No. 2015CB759600), the Shaanxi Key Research and Development Program, China (Grant No. 2018ZDXM-GY-008), and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2017JM6003).
Corresponding Authors:  Qing-Wen Song     E-mail:  qwsong@xidian.edu.cn

Cite this article: 

Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门) Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure 2019 Chin. Phys. B 28 117303

[1] Kimoto T 2015 Jpn. J. Appl. Phys. 54 040103
[2] Bhatnagar M and Baliga B J 1993 IEEE Trans. Electron. Dev. 40 645
[3] Alexandrov P, Wright W, Pan M, Weiner M, Jiao L and Zhao J H 2003 Solid-State Electron. 47 263
[4] Zhu L, Chow T P, Jones K A and Agarwal A 2006 IEEE Trans. Electron. Dev. 53 363
[5] Draghici M, Rupp R, Gerlach R and Zippelius B 2015 Mater. Sci. Forum 821-823 608
[6] Wahab Q, Kimoto T, Ellison A, Hallin C, Tuominen M, Yakimova R, Henry A, Bergman J P and Janzén E A 1998 Appl. Phys. Lett. 72 445
[7] Nakamura T, Miyanagi T, Kamata I, Jikimoto T and Tsuchida H 2005 IEEE Electron Dev. Lett. 26 99
[8] Perrone D, Naretto M, Ferrero S, Scaltrito L and Pirri C F 2009 Mater. Sci. Forum 615-617 647
[9] Boussouar L, Ouennoughi Z, Rouag N, Sellai A, Weiss R and Ryssel H 2011 Microelectron. Eng. 88 969
[10] Tumakha S, Ewing D J, Porter L M, Wahab Q, Ma X, Sudharshan T S and Brillson L 2005 J. Appl. Phys. Lett. 87 242106
[11] Calcagno L, Ruggiero A, Roccaforte F and La V F 2005 J. Appl. Phys. 98 023713
[12] Tuokedaerhan K, Tan R, Kakushima K, Ahmet, P, Kataoka Y, Nishiyama A, Sugii N, Wakabayashi H, Tsutsui K, Natori K, Hattori T and Iwai H 2013 Appl. Phys. Lett. 103 111908
[13] Omar S U, Sudarshan T S, Rana T A and Song H 2014 J. Phys. D:Appl. Phys. 47 295102
[14] Pérez R, Mestres N, Montserrat J, Tournier D and Godignon P 2005 Phys. Status Solidi A 202 692
[15] Ewing D J, Wahab Q, Ciechonski R R, Syväjärvi M, Yakimova R and Porter L M 2007 Semicond. Sci. Technol. 22 1287
[16] Omar S U, Sudarshan T S, Rana T A and Song H 2015 IEEE Electron Dev. Lett. 62 615
[17] Kurimoto E, Harima H, Toda T, Sawada M, Iwami M and Nakashima S 2002 J. Appl. Phys. 91 10215
[18] Roccaforte F, La V F, Raineri V, Musumeci P, Calcagno L and Condorelli G G 2003 Appl. Phys. A 77 827
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[5] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[6] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[7] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[8] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[9] Effect of anode area on the sensing mechanism of vertical GaN Schottky barrier diode temperature sensor
Ji-Yao Du(都继瑶), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(4): 047701.
[10] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[11] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[12] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[13] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[14] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[15] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
No Suggested Reading articles found!