Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 087305    DOI: 10.1088/1674-1056/20/8/087305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Al/Ti/4H–SiC Schottky barrier diodes with inhomogeneous barrier heights

Wang Yue-Hu(王悦湖),Zhang Yi-Men(张义门),Zhang Yu-Ming(张玉明), Song Qing-Wen(宋庆文),and Jia Ren-Xu(贾仁需)
School of Microelectronics and Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an 710071, China
Abstract  This paper investigates the current--voltage ($I$--$V$) characteristics of Al/Ti/4H--SiC Schottky barrier diodes (SBDs) in the temperature range of 77 K--500 K, which shows that Al/Ti/4H--SiC SBDs have good  rectifying behaviour. An abnormal behaviour, in which the zero bias barrier height decreases while the ideality factor increases with decreasing temperature ($T$), has been successfully interpreted by using thermionic emission theory with Gaussian distribution of the barrier heights due to the inhomogeneous barrier height at the Al/Ti/4H--SiC interface. The effective Richardson constant $A^*=154$ A/cm$^{2}$ $\cdot$ K$^{2}$ is determined by means  of a modified Richardson plot $\ln(I_{0}/T^{2})-(q\sigma )^{2}/2(kT)^{2}$ versus $q/kT$, which is very close to the theoretical value 146~A/cm$^{2}$ $\cdot$ K$^{2}$.
Keywords:  Schottky contact      4H—SiC      barrier height inhomogeneity      temperature  
Received:  06 December 2010      Revised:  01 March 2011      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Sx (Metal-semiconductor-metal structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60876061) and the Key Laboratory Science Foundation (Grant No. 20090C1403).

Cite this article: 

Wang Yue-Hu(王悦湖), Zhang Yi-Men(张义门), Zhang Yu-Ming(张玉明), Song Qing-Wen(宋庆文), and Jia Ren-Xu(贾仁需) Al/Ti/4H–SiC Schottky barrier diodes with inhomogeneous barrier heights 2011 Chin. Phys. B 20 087305

[1] Zhao J H, Alexandorov P and Li X 2003 IEEE Electron Device Lett. 24 402
[2] Song Q W, Zhang Y M, Zhang Y M, Lü H L, Chen F P and Zheng Q L 2009 Chin. Phys. B 18 5474
[3] Saxena V, Jian N S and Steckl A J 1999 IEEE Trans. Electron Devices 46 456
[4] Song Q W, Zhang Y M, Zhang Y M, Zheng Q and Lü H L 2010 it Chin. Phys. B 19 087202
[5] Via F L, Galvagno G, Roccaforte F, Ruggiero A and Calcagno L 2005 Appl. Phys. Lett. bf87 142105
[6] Pakma O, Serin N, Serin T and Altindal X 2008 it J. Appl. Phys. 104 014501
[7] Defives D, Noblanc O, Dua C, Brylinski C, Barthula M, Fortuna V A and Meyer F 1999 IEEE Trans. Electron Devices 46 449
[8] Yidiz D E, Altindal S and Kanbur H 2008 J. Appl. Phys. bf 103 124502
[9] Ewing D J and Porter L M 2007 J. Appl. Phys. 101 114514
[10] Biber M, Gullu O, Duman S and Turut A 2007 Appl. Surf. Sci. 253 7246
[11] Tacscchioglu .I, Aydemir U and Althindal cS2010 J. Appl. Phys. 108 064506
[12] Tung R T 1992 Phys. Rev. B bf45 13509
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[5] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[6] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[7] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[8] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[9] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[10] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[11] A 658-W VCSEL-pumped rod laser module with 52.6% optical efficiency
Xue-Peng Li(李雪鹏), Jing Yang(杨晶), Meng-Shuo Zhang(张梦硕), Tian-Li Yang(杨天利), Xiao-Jun Wang(王小军), and Qin-Jun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 084207.
[12] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[13] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[14] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[15] A radiation-temperature coupling model of the optical fiber attenuation spectrum in the Ge/P co-doped fiber
Yong Li(李勇), Haoshi Zhang(张浩石), Xiaowei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(7): 074211.
No Suggested Reading articles found!