Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 056103    DOI: 10.1088/1674-1056/23/5/056103

Coulombic interaction in the colloidal oriented-attachment growth of tetragonal nanorods

Li Jun-Fana b, Wen Ke-Chuna b, He Wei-Donga, Wang Xiao-Ninga, Lü Wei-Qianga, Yan Peng-Feia, Song Yuan-Qianga, Lu Hong-Liangc, Lin Xiaoc, Dickerson J. H.d e
a School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China;
b School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 611731, China;
c School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
d Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, US;
e Department of Physics, Brown University, Providence, RI 02912, US
Abstract  In this report, the analytical expression of Coulombic interaction between a spherical nanoparticle and a tetragonal nanorod is derived. To evaluate the Coulombic interaction in the oriented attachment growth of tetragonal nanorods, we analyze the correlation between the Coulombic interaction and the important growth parameters, including: nanoparticle-nanorod separation, aspect ratio of the nanorods, and surface charge density. Our work opens up the opportunity to investigate interparticle interactions in the oriented attachment growth of tetragonal nanorods.
Keywords:  Coulombic interaction      oriented-attachment growth      tetragonal nanorod      nanoparticle  
Received:  12 October 2013      Revised:  20 January 2014      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Youth Natural Science Foundation, China (Grant No. 61106099).These authors contributed equally to this work.
Corresponding Authors:  He Wei-Dong, Lin Xiao     E-mail:;
About author:  61.46.Km; 81.16.-c; 02.60.-x

Cite this article: 

Li Jun-Fan, Wen Ke-Chun, He Wei-Dong, Wang Xiao-Ning, Lü Wei-Qiang, Yan Peng-Fei, Song Yuan-Qiang, Lu Hong-Liang, Lin Xiao, Dickerson J. H. Coulombic interaction in the colloidal oriented-attachment growth of tetragonal nanorods 2014 Chin. Phys. B 23 056103

[1] Hu J, Odom T W and Lieber C M 1999 Acc. Chem. Res. 32 435
[2] Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G and Fisher I R 2010 Nat. Phys. 6 960
[3] Cao Z Y, Gao T R, Peng Y and Li F S 2002 Chin. Phys. 11 1307
[4] Li S R and Huang W Q 2004 Chin. Phys. 13 1163
[5] Thota S, Kumar A and Kumar J 2009 Mater. Sci. Eng. B 164 30
[6] He W D, Krejci A, Lin J, Osmulski M E and Dickerson J H 2011 Nanoscale 3 1523
[7] He W D, Somarajan S, Koktysh D S and Dickerson J H 2011 Nanoscale 3 184
[8] He W D, Osmulski M E, Lin J, Koktysh D S, McBride J R, Park J H and Dickerson J H 2012 J. Mater. Chem. 22 16728
[9] Wu Y C, Zhu J and Yan S N 2004 Chin. Phys. Lett. 21 559
[10] Matsui I 2005 J. Chem. Eng. Jpn. 38 535
[11] Teng X and Yang H 2003 J. Am. Chem. Soc. 125 14559
[12] Gao C X, Chen J G, Zhang L L and Hu J T 2004 Chin. Phys. Lett. 21 1366
[13] Jensen G V, Bremholm M, Lock N, Deen G R, Jensen T R, Iversen B B, Niederberger M, Pedersen J S and Birkedal H 2010 Chem. Mater. 22 6044
[14] Yan R, Sun X, Wang X, Peng Q and Li Y 2005 Chem. Eur. J. 11 2183
[15] Dong S Y, Hu L H and Wang K J 2005 Chin. Phys. Lett. 22 493
[16] Huang F, Zhang H and Banfield J F 2003 Nano Lett. 3 373
[17] Zhang J, Huang F and Lin Z 2010 Nanoscale 2 18
[18] Zhang Q, Liu S J and Yu S H 2009 J. Mater. Chem. 19 191
[19] Zhang H, Finnegan M P and Banfield J 2013 Nanoscale 5 6742
[20] He W D, Lin J, Lin X, Lu N, Zhou M and Zhang K H 2012 Analyst 137 4917
[21] He W D, Lin J, Wang B, Tuo S, Pantelide S T and Dickerson J H 2012 Phys. Chem. Chem. Phys. 14 4548
[22] Henkel A, Schubert O, Plech A and Sönnichsen C 2009 J. Phys. Chem. C 113 10390
[23] Dalmaschio C J, Ribeiro C and Leite E R 2010 Nanoscale 2 2336
[24] Schwaab M and Pinto J C 2007 Chem. Eng. Sci. 62 2750
[25] He W D 2013 Cryst. Eng. Comm. 16 1439
[1] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[2] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[3] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[4] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[7] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[8] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[9] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[10] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
[11] Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[12] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[13] Supersonic boundary layer transition induced by self-sustaining dual jets
Qiang Liu(刘强), Zhenbing Luo(罗振兵), Xiong Deng(邓雄), Zhiyong Liu(刘志勇), Lin Wang(王林), Yan Zhou(周岩). Chin. Phys. B, 2020, 29(1): 014704.
[14] Multiple trapping using a focused hybrid vector beam
Li Zhang(张莉), Xiaodong Qiu(邱晓东), Lingwei Zeng(曾令伟), Lixiang Chen(陈理想). Chin. Phys. B, 2019, 28(9): 094202.
[15] Field-variable magnetic domain characterization of individual 10 nm Fe3O4 nanoparticles
Zheng-Hua Li(李正华), Xiang Li(李翔), Wei Lu(陆伟). Chin. Phys. B, 2019, 28(7): 077504.
No Suggested Reading articles found!