Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(5): 056103    DOI: 10.1088/1674-1056/23/5/056103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Coulombic interaction in the colloidal oriented-attachment growth of tetragonal nanorods

Li Jun-Fan (李峻樊)a b, Wen Ke-Chun (文克春)a b, He Wei-Dong (何伟东)a, Wang Xiao-Ning (王晓宁)a, Lü Wei-Qiang (吕维强)a, Yan Peng-Fei (严鹏飞)a, Song Yuan-Qiang (宋远强)a, Lu Hong-Liang (路红亮)c, Lin Xiao (林晓)c, Dickerson J. H.d e
a School of Energy Science and Engineering, University of Electronic Science and Technology, Chengdu 611731, China;
b School of Life Science and Technology, University of Electronic Science and Technology, Chengdu 611731, China;
c School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
d Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, US;
e Department of Physics, Brown University, Providence, RI 02912, US
Abstract  In this report, the analytical expression of Coulombic interaction between a spherical nanoparticle and a tetragonal nanorod is derived. To evaluate the Coulombic interaction in the oriented attachment growth of tetragonal nanorods, we analyze the correlation between the Coulombic interaction and the important growth parameters, including: nanoparticle-nanorod separation, aspect ratio of the nanorods, and surface charge density. Our work opens up the opportunity to investigate interparticle interactions in the oriented attachment growth of tetragonal nanorods.
Keywords:  Coulombic interaction      oriented-attachment growth      tetragonal nanorod      nanoparticle  
Received:  12 October 2013      Revised:  20 January 2014      Accepted manuscript online: 
PACS:  61.46.Km (Structure of nanowires and nanorods (long, free or loosely attached, quantum wires and quantum rods, but not gate-isolated embedded quantum wires))  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Youth Natural Science Foundation, China (Grant No. 61106099).These authors contributed equally to this work.
Corresponding Authors:  He Wei-Dong, Lin Xiao     E-mail:  weidong.he@uestc.edu.cn;xlin@ucas.ac.cn
About author:  61.46.Km; 81.16.-c; 02.60.-x

Cite this article: 

Li Jun-Fan (李峻樊), Wen Ke-Chun (文克春), He Wei-Dong (何伟东), Wang Xiao-Ning (王晓宁), Lü Wei-Qiang (吕维强), Yan Peng-Fei (严鹏飞), Song Yuan-Qiang (宋远强), Lu Hong-Liang (路红亮), Lin Xiao (林晓), Dickerson J. H. Coulombic interaction in the colloidal oriented-attachment growth of tetragonal nanorods 2014 Chin. Phys. B 23 056103

[1] Hu J, Odom T W and Lieber C M 1999 Acc. Chem. Res. 32 435
[2] Analytis J G, McDonald R D, Riggs S C, Chu J H, Boebinger G and Fisher I R 2010 Nat. Phys. 6 960
[3] Cao Z Y, Gao T R, Peng Y and Li F S 2002 Chin. Phys. 11 1307
[4] Li S R and Huang W Q 2004 Chin. Phys. 13 1163
[5] Thota S, Kumar A and Kumar J 2009 Mater. Sci. Eng. B 164 30
[6] He W D, Krejci A, Lin J, Osmulski M E and Dickerson J H 2011 Nanoscale 3 1523
[7] He W D, Somarajan S, Koktysh D S and Dickerson J H 2011 Nanoscale 3 184
[8] He W D, Osmulski M E, Lin J, Koktysh D S, McBride J R, Park J H and Dickerson J H 2012 J. Mater. Chem. 22 16728
[9] Wu Y C, Zhu J and Yan S N 2004 Chin. Phys. Lett. 21 559
[10] Matsui I 2005 J. Chem. Eng. Jpn. 38 535
[11] Teng X and Yang H 2003 J. Am. Chem. Soc. 125 14559
[12] Gao C X, Chen J G, Zhang L L and Hu J T 2004 Chin. Phys. Lett. 21 1366
[13] Jensen G V, Bremholm M, Lock N, Deen G R, Jensen T R, Iversen B B, Niederberger M, Pedersen J S and Birkedal H 2010 Chem. Mater. 22 6044
[14] Yan R, Sun X, Wang X, Peng Q and Li Y 2005 Chem. Eur. J. 11 2183
[15] Dong S Y, Hu L H and Wang K J 2005 Chin. Phys. Lett. 22 493
[16] Huang F, Zhang H and Banfield J F 2003 Nano Lett. 3 373
[17] Zhang J, Huang F and Lin Z 2010 Nanoscale 2 18
[18] Zhang Q, Liu S J and Yu S H 2009 J. Mater. Chem. 19 191
[19] Zhang H, Finnegan M P and Banfield J 2013 Nanoscale 5 6742
[20] He W D, Lin J, Lin X, Lu N, Zhou M and Zhang K H 2012 Analyst 137 4917
[21] He W D, Lin J, Wang B, Tuo S, Pantelide S T and Dickerson J H 2012 Phys. Chem. Chem. Phys. 14 4548
[22] Henkel A, Schubert O, Plech A and Sönnichsen C 2009 J. Phys. Chem. C 113 10390
[23] Dalmaschio C J, Ribeiro C and Leite E R 2010 Nanoscale 2 2336
[24] Schwaab M and Pinto J C 2007 Chem. Eng. Sci. 62 2750
[25] He W D 2013 Cryst. Eng. Comm. 16 1439
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[4] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[8] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[9] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[10] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[11] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[12] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[13] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[14] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!