Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048102    DOI: 10.1088/1674-1056/23/4/048102

Influences of nitrogen flow rate on the structures and properties of Ti and N co-doped diamond-like carbon films deposited by arc ion plating

Zhang Lina b, Ma Guo-Jiab, Lin Guo-Qianga, Ma Heb, Han Ke-Changa
a Key Laboratory for Material Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China;
b Science and Technology on Power Beam Processes Laboratory, Beijing Aeronautical ManufacturingTechnology Research Institute, Beijing 100024, China
Abstract  In this paper, Ti-C-N nanocomposite films are deposited under different nitrogen flow rates by pulsed bias arc ion plating using Ti and graphite targets in the Ar/N2 mixture gas. The surface morphologies, compositions, microstructures, and mechanical properties of the Ti-C-N films are investigated systematically by field emission scanning electron microscopy (FE-SEM), x-ray photoelectron spectroscopy (XPS), grazing incident x-ray diffraction (GIXRD), Raman spectra, and nano-indentation. The results show that the nanocrystalline Ti(C,N) phase precipitates in the film from GIXRD and XPS analysis, and Raman spectra prove the presence of diamond-like carbon, indicating the formation of nanocomposite film with microstructures comprising nanocrystalline Ti(C,N) phase embedded into a diamond-like matrix. The nitrogen flow rate has a significant effect on the composition, structure, and properties of the film. The nano-hardness and elastic modulus first increase and then decrease as nitrogen flow rate increases, reaching a maximum of 34.3 GPa and 383.2 GPa, at a nitrogen flow rate of 90 sccm, respectively.
Keywords:  arc ion plating      Ti-C-N film      nitrogen flow rate      microstructure  
Received:  26 July 2013      Revised:  22 September 2013      Accepted manuscript online: 
PACS:  81.15.Jj (Ion and electron beam-assisted deposition; ion plating)  
  68.55.-a (Thin film structure and morphology)  
  68.60.Bs (Mechanical and acoustical properties)  
  61.05.cj (X-ray absorption spectroscopy: EXAFS, NEXAFS, XANES, etc.)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51271047).
Corresponding Authors:  Zhang Lin     E-mail:
About author:  81.15.Jj; 68.55.-a; 68.60.Bs; 61.05.cj

Cite this article: 

Zhang Lin, Ma Guo-Jia, Lin Guo-Qiang, Ma He, Han Ke-Chang Influences of nitrogen flow rate on the structures and properties of Ti and N co-doped diamond-like carbon films deposited by arc ion plating 2014 Chin. Phys. B 23 048102

[1] Zhang G, Li B, Jiang B, Yan F and Chen D 2009 Appl. Surf. Sci. 255 8788
[2] Shafiq M, Hassan M, Shahzad K, Qayyum A, Ahmad S, Rawat R S and Zakaullah M 2010 Chin. Phys. B 19 012801
[3] Cheng Y and Zheng Y F 2007 Surf. Coat. Technol. 201 4909
[4] Lu Y H, Wang J P and Shen Y G 2009 Appl. Surf. Sci. 255 7858
[5] Tsotsos C, Baker M A, Polychronopoulou K, Gibson P N, Giannakopoulos K, Polycarpou A A, Böbel K and Rebholz C 2010 Thin Solid Films 519 24
[6] Martínez-Martínez D, López-Cartes C, Justo A, Fernández A and Sáchez-López J C 2009 Solid State Sci. 11 660
[7] Barshilia H C, Prakash M S, Sridhara Rao D V and Rajam K S 2005 Surf. Coat. Technol. 195 147
[8] Lu Y H and Shen Y G 2007 Appl. Phys. Lett. 90 221913
[9] Chen R, Tu J P, Liu D G, Mai Y J and Gu C D 2011 Surf. Coat. Technol. 205 5228
[10] Lin G Q, Zhao Y H, Guo H M, Wang D Z, Dong C, Huang R F and Wen L S 2004 J. Vac. Sci. Technol. A 22 1218
[11] Zhang M, Lin G Q, Dong C and Wen L S 2007 Acta Phys. Sin. 56 7300 (in Chinese)
[12] Stüber M, Leiste H, Ulrich S, Holleck H and Schild D 2002 Surf. Coat. Technol. 150 218
[13] Zhou F, Adachi K and Kato K 2006 Thin Solid Films 514 231
[14] Guemmaz M, Moraitis G, Mosser A, Khan M A and Parlebas J C 1997 J. Phys.: Condes. Matter 9 8453
[15] Johansson L I, Johansson H I P and Håkansson K L 1993 Phys. Rev. B 48 14520
[16] Wang Q, Zhou F, Zhou Z, Yang Y, Yan C, Wang C, Zhang W J, Li L K Y, Bello I and Lee S T 2012 Surf. Coat. Technol. 206 3777
[17] Levi G, Kaplan W D and Bamberger M 1998 Mater. Lett. 35 344
[18] Robertson J 2002 Mater. Sci. Eng. R 37 129
[19] Chu P K and Li L 2006 Mater. Chem. Phys. 96 253
[20] Zhang S, Zeng X T, Xie H and Hing P 2000 Surf. Coat. Technol. 123 256
[21] Vepřek S and Reiprich S 1995 Thin Solid Films 268 64
[22] Li H K, Lin G Q and Dong C 2010 Acta Phys. Sin. 59 4296 (in Chinese)
[1] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[2] Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃
Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056107.
[3] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
[4] Magnetic properties and promising cryogenic magneto-caloric performances of Gd20Ho20Tm20Cu20Ni20 amorphous ribbons
Yikun Zhang(张义坤), Bingbing Wu(吴兵兵), Dan Guo(郭丹), Jiang Wang(王江), and Zhongming Ren(任忠鸣). Chin. Phys. B, 2021, 30(1): 017501.
[5] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[8] Multi-scale elastoplastic mechanical model and microstructure damage analysis of solid expandable tubular
Hui-Juan Guo(郭慧娟), Ying-Hua Liu(刘应华), Yi-Nao Su(苏义脑), Quan-Li Zhang(张全立), and Guo-Dong Zhan(詹国栋)†. Chin. Phys. B, 2020, 29(10): 104602.
[9] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[10] Effect of microstructure on 3He migration in TiT1.9 films
Haifeng Wang(王海峰), Shuming Peng(彭述明), Wei Ding(丁伟), Huahai Shen(申华海), Weidu Wang(王维笃), Xiaosong Zhou(周晓松), Xinggui Long(龙兴贵). Chin. Phys. B, 2018, 27(9): 096103.
[11] Microparticle collection for water purification based on laser-induced convection
Zhi-Hai Liu(刘志海), Jiao-Jie Lei(雷皎洁), Yu Zhang(张羽), Ya-Xun Zhang(张亚勋), Xing-Hua Yang(杨兴华), Jian-Zhong Zhang(张建中), Yun Yang(杨军), Li-Bo Yuan(苑立波). Chin. Phys. B, 2018, 27(5): 054209.
[12] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[13] High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review
Tie Liu(刘铁), Qiang Wang(王强), Yi Yuan(苑轶), Kai Wang(王凯), Guojian Li(李国建). Chin. Phys. B, 2018, 27(11): 118103.
[14] Material microstructures analyzed by using gray level Co-occurrence matrices
Yansu Hu(胡延苏), Zhijun Wang(王志军), Xiaoguang Fan(樊晓光), Junjie Li(李俊杰), Ang Gao(高昂). Chin. Phys. B, 2017, 26(9): 098104.
[15] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
No Suggested Reading articles found!