Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046201    DOI: 10.1088/1674-1056/23/4/046201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Mechanical and thermodynamic properties of cubic YH2 under high pressure:Prediction from first-principles study

Li Zhen-Li, Cheng Xin-Lu
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China
Abstract  First-principles calculations are used to investigate the mechanical and thermodynamic properties of cubic YH2 at different pressures and temperatures. The generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) method is used to describe the exchange-correlation energy in the present work. The calculated equilibrium lattice constant a and bulk modulus B are in good accordance with the available experimental values. According to the Born-Huang criteria for mechanical stability, elastic constants are calculated from the strain-induced stress method in a pressure range from 0 to 67.1 GPa. Isotropic wave velocities and sound velocities are discussed in detail. It is found that the Debye temperature decreases monotonically with the increase of pressure and that YH2 has low anisotropy in both longitudinal and shear-wave velocities. The calculated elastic anisotropic factors indicate that YH2 has low anisotropy at zero pressure and that its elastic anisotropy increases as pressure increases. Through the quasi-harmonic Debye model, in which phononic effects are considered, the thermodynamic properties of YH2, such as the relations of (V-V0)/V0 to the temperature and the pressure, the dependences of heat capacity Cv and thermal expansion coefficient αon temperature and pressure ranging from 0 to 2400 K and from 0 to 65 GPa, respectively, are also discussed.
Keywords:  YH2 density functional theory      mechanical properties      thermodynamic properties      quasi-harmonic Debye model  
Received:  28 July 2013      Revised:  30 October 2013      Accepted manuscript online: 
PACS:  62.20.de (Elastic moduli)  
  67.25.bd (Thermodynamic properties)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11176020).
Corresponding Authors:  Cheng Xin-Lu     E-mail:  chengxl@scu.edu.cn
About author:  62.20.de; 67.25.bd; 71.15.Mb

Cite this article: 

Li Zhen-Li, Cheng Xin-Lu Mechanical and thermodynamic properties of cubic YH2 under high pressure:Prediction from first-principles study 2014 Chin. Phys. B 23 046201

[1] Viswall R and Alefeld G 1978 Hydrogen Storage in Metals Ⅱ (Berlin: Springer) p. 201
[2] Latroche M J 2004 Phys. Chem. Solids 65 517
[3] Granqvist C G, Azens A, Hjelm A, Kullman L, Niklasson G A, Rönnow D, Stromme Mattsson M, Veszelei M and Vaivars G 1998 Solar Energy 63 199
[4] Huiberts J N, Griessen R, Rector J H, Wijngaarden R J, Dekker J P, de Groot D G and Koeman N J 1996 Nature 380 231
[5] Ito M, Setoyama D, Matsunaga J, Muta H, Kurosaki K, Uno M and Yamanaka S 2006 J. Alloys Compd. 426 67
[6] Beattie A G 1972 J. Appl. Phys. 43 3219
[7] Vajda P and Daou J N 1991 Phys. Rev. Lett. 66 3176
[8] Daou J N and Vajda P 1992 Phys. Rev. B 45 10907
[9] Wang Y and Chou M Y 1993 Phys. Rev. B 49 10731
[10] Kanagaprabha S, Asvinimeenaatci A T, Sudhapriyanga G, Jemmy Cinthia A, Rajeswarapalanichamy R and Iyakutti K 2013 Acta Phys. Pol. A 123 126
[11] Chihi T, Fatmi M and Bouhemadou A 2012 Solid State Sci. 14 583
[12] Vehoff H 1997 in: Hydrogen in Metals III, Properties and Applications, ed. Wipf H (Berlin: Springer-Verlag) p. 215
[13] Blanco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
[14] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[15] Milman V, Winkler B, White J A, Pickard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum Chem. 77 895
[16] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[17] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[18] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[19] Birch F 1986 J. Geophys. Res. 91 4949
[20] Machida A, Ohmura A, Watanuki T, Ikeda T, Aoki K, Nakano S and Takemura K 2006 Solid State Commun. 138 436
[21] Pebler A and Wallace W E 1962 J. Phys. Chem. 66 148
[22] Wolf W and Herzig P 2000 J. Phys.: Condens. Matter 12 4535
[23] Sun S N, Wang Y and Chou M Y 1994 Phys. Rev. B 49 6481
[24] Peterman D J, Harmon B N and Marchiando J 1979 Phys. Rev. B 19 4867
[25] Nye J F 1985 Physical Properties of Crystals (Oxford: Clarendon) p. 329
[26] Wentzcovitch R M, Ross N L and Price G D 1995 Phys. Earth Planet. Interiors 90 101
[27] Karki B B, Stixrude L, Clark S J, Warren M C, Ackland G J and Crain J 1997 Am. Mineral. 82 51
[28] Sin'ko G V and Smirnow N A 2002 J. Phys.: Condens. Matter 14 6989
[29] Zha C S, Mao H K and Hemley R J 2000 Proc. Natl. Acad. Sci. USA 97 13494
[30] Wang J H, Li J, Yip S, Phillpot S and Wolf D 1995 Phys. Rev. B 52 12627
[31] Pugh S F 1954 Philos. Mag. 45 823
[32] Frantsevich I N, Voronov F F and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukuva Dumka) pp. 60-180
[33] Wdowik U D, Parliński K and Siegel A 2006 J. Phys. Chem. Solids 67 1477
[34] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[35] Lu L Y, Cheng Y, Chen X R and Zhu J 2005 Physica B 370 236
[36] Schreiber E, Anderson O L and Soga N 1973 Elastic Constants and Their Measurements (New York: McGrawHill)
[37] Landau L D and Lifschitz E M 1980 Theory of Elasticity, Course of Theoretical Physics (New York: Pergamon Press)
[38] Wang H Y, Chen X R, Zhu W J and Cheng Y 2005 Phys. Rev. B 72 172502
[39] Haines J, Léger J M and Bocquillon G 2001 Ann. Rev. Mater. Res. 3 1
[40] Ravindran P, Fast L, Korzhavyi P A, Johnnsson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[41] Maachou A, Aboura H, Amrani B, Khenata R, Omran S B and Varshney D 2011 Comp. Mater. Sci. 50 3123
[42] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
[43] Ren D H and Cheng X L 2012 Chin. Phys. B 21 127103
[44] Tsuchiya T and Kawamura K 2001 J. Chem. Phys. 114 10086
[45] Maradudin A A, Montroll E W, Weiss G H and Ipatova I P 1971 Theory of Lattice Dynamics in the Harmonic Approximation (New York: Academic Press)
[46] Blanco M A, Pendás A M, Francisco E, Recio J M and Franco R 1996 J. Mol. Struct. 368 245
[47] Flórez M, Recio J M, Francisco E, Blanco M A and Pendás A M 2002 Phys. Rev. B 66 144112
[48] Francisco E, Recio J M, Blanco M A, Pendás A M and Costales A 1998 J. Phys. Chem. 102 1595
[49] Francisco E, Blanco M A and Sanjurjo G 2001 Phys. Rev. B 63 094107
[50] Poirier J P 2000 Introduction to the Physics of the Earth's Interior (Oxford: Cambridge University Press) p. 11
[51] Wentzcovitch R M, Chang K J and Cohen M L 1986 Phys. Rev. B 34 1071
[52] Babu K E, Veeraiah A, Swamy D T and Veeraiah V 2012 Chin. Phys. Lett. 29 117102
[53] Chang J, Chen X R, Zhang W and Zhu J 2008 Chin. Phys. B 17 1377
[54] Liu L, Wei J J, An X Y, Wang X M, Liu H N and Wu W D 2011 Chin. Phys. B 20 106201
[55] Liu X K and Tang B 2013 Chin. Phys. Lett. 30 066201
[56] Debye P 1912 Ann. Phys. 39 789
[57] Petit A T and Dulong P L 1819 Ann. Chim. Phys. 10 395
[1] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[2] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[3] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[4] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[5] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[6] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[7] Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films
Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚). Chin. Phys. B, 2019, 28(4): 046201.
[8] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[9] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
[10] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[11] Structural, electronic, vibrational, and thermodynamic properties of Zr1-xHfxCo: A first-principles-based study
Jun-Chao Liu(刘俊超), Zhi-Hong Yuan(袁志红), Shi-Chang Li(李世长), Xiang-Gang Kong(孔祥刚), You Yu(虞游), Sheng-Gui Ma(马生贵), Ge Sang(桑革), Tao Gao(高涛). Chin. Phys. B, 2018, 27(4): 047802.
[12] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
[13] First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T=Ti, V, Cr, Nb, and Ta) intermetallic cage compounds
Shanyu Quan(权善玉), Xudong Zhang(张旭东), Cong Liu(刘聪), Wei Jiang(姜伟). Chin. Phys. B, 2018, 27(12): 126201.
[14] First principles study of stability, mechanical, and electronic properties of chromium silicides
Bo Ren(任博), De-Hong Lu(卢德宏), Rong Zhou(周荣), De-Peng Ji(姬德朋), Ming-Yu Hu(胡明钰), Jing Feng(冯晶). Chin. Phys. B, 2018, 27(10): 107102.
[15] Structural, electronic, and mechanical properties of cubic TiO2: A first-principles study
Debashish Dash, Chandan K Pandey, Saurabh Chaudhury, Susanta K Tripathy. Chin. Phys. B, 2018, 27(1): 017102.
No Suggested Reading articles found!