Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 046501    DOI: 10.1088/1674-1056/23/4/046501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures

Guo Feng (郭峰)a b c, Zhang Hong (张红)d, Hu Hai-Quan (胡海泉)a b, Cheng Xin-Lu (程新路)c
a School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252000, China;
b Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252000, China;
c Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
d School of Physical Science & Technology, Sichuan University, Chengdu 610065, China
Abstract  To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC-DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra-and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter-and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C-H bond is observed in solid RDX, which may lead to further decomposition and even detonation.
Keywords:  hydrogen bond      TATB      RDX      DATB      ReaxFF      energetic materials  
Received:  23 March 2013      Revised:  29 October 2013      Accepted manuscript online: 
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  82.20.Wt (Computational modeling; simulation)  
  82.30.-b (Specific chemical reactions; reaction mechanisms)  
  82.30.Rs (Hydrogen bonding, hydrophilic effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11176020) and the Fund from the China Academy of Engineering Physics, China (Grant No. 2011A0302014).
Corresponding Authors:  Guo Feng     E-mail:  gfeng.alan@foxmail.com
About author:  65.40.-b; 82.20.Wt; 82.30.-b; 82.30.Rs

Cite this article: 

Guo Feng (郭峰), Zhang Hong (张红), Hu Hai-Quan (胡海泉), Cheng Xin-Lu (程新路) Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures 2014 Chin. Phys. B 23 046501

[1] Rice B M and Hare J J 2001 J. Phys. Chem. A 106 1770
[2] Zhang H, Cheung F and Zhao F 2009 Int. J. Quantum Chem. 109 1547
[3] Melius C F 1990 Chemistry and Physics of Energetic Materials (Amsterdam: The Netherlands)
[4] Politzer P, Murray J S and Struct J M 1996 J. Mol. Struct. 376 419
[5] Politzer P and Murray J S 1995 Mol. Phys. 86 251
[6] Politzer P, Murray J S and Concha M C 1998 J. Phys. Chem. A 102 6697
[7] Shao J X, Cheng X L, Yang X D and He B 2006 Chin. Phys. 15 329
[8] Wu C J and Fried L E 1998 "First-principles Study of High Explosive Decomposition Energetics" in: Elventh International Detonation Symposium, Snowmass, Colorado, USA, p. 490
[9] Fried L E, Manaa M R, Pagoria P F and Simpson R L 2001 Ann. Rev. Mater. Res. 31 291
[10] Liu H, Zhao J J, Gong Z Z, Ji G F and Wei D Q 2007 Phys. Lett. A 367 383
[11] Stephen A D, Srinivasan P and Kumaradhas P 2011 Comput. Theor. Chem. 967 250
[12] Politzer P and Murray J S 2003 Energetic Materials Part 2: Detonation and Combustion, Theoretical and Computational Chemistry (Amsterdam: Elsevier B V) p. 174
[13] Owens F J 1996 J. Mol. Struct. (Theochem) 370 11
[14] Muray J S and Politzer P 1990 Chem. Phys. Lett. 168 135
[15] Rice B M, Samir S and Owens F J 2002 J. Mol. Struct. (Theochem) 583 69
[16] Xiao H M, Fan J F and Gong X D 1997 Propellants, Explosives, Pyroechnics 22 360
[17] Zhi C Y Cheng X L and Zhao F 2010 Propellants, Explosives, Pyroechnics 35 555
[18] Yang Z W, Li H Z, Huang H, Zhou X Q, Li J S and Nie F D 2010 Propellants, Explosives, Pyroechnics 35 1
[19] Bolton O, Simke L R, Pagoria P H and Matzger A J 2012 Cryst. Growth Des. 12 4311
[20] Zhang C Y, Wang X C and Huang H 2008 J. Am. Chem. Soc. 130 8359
[21] Ojeda O U and Çğin T 2011 J. Phys. Chem. B 115 12085
[22] Kohno Y, Hiyoshi R I, Yamaguchi Y, Matsumoto S, Koseki A, Takahashi O, Yamasaki K and Ueda K 2009 J. Phys. Chem. A 113 2551
[23] Manaa M R and Fried L E 2012 J. Phys. Chem. C 116 2116
[24] Ren X P, Zhou B, Li L T and Wang C L 2013 Chin. Phys. B 22 016801
[25] Li D F, Gao S Q, Sun C L and Li Z W 2012 Chin. Phys. B 21 083301
[26] Ouyang S L, Wu N N, Sun C L, Liu J Y, Li Z W and Gao S Q 2010 Chin. Phys. B 19 093103
[27] Chen M, Min R, Zhou J M, Hu H, Lin B, Miao L and Jiang J J 2010 Acta Phys. Sin. 58 5148 (in Chinese)
[28] Chen C Z, Li P, Lin X Y, Liu C Q, Qiu S H, Wu Y D and Yu C Y 2009 Acta Phys. Sin. 58 2565 (in Chinese)
[29] Zhang Z H, Han K, Li H P, Tang G, Wu Y X, Wang H T and Bai L 2008 Acta Phys. Sin. 57 3160 (in Chinese)
[30] Zhao X Y, Wang H, Yan H, Gai Z, Zhao R G and Yang W S 2001 Chin. Phys. 16 392
[31] Liu L, Liu Y, Zybin S V, Sun H and Goddard W A 2011 J. Phys. Chem. A 115 11016
[32] Aradi B, Hourahine B and Frauenheim T 2007 J. Phys. Chem. A 111 5678
[33] Elstner M, Suhai S and Seifert G 1998 Phys. Rev. B 58 7260
[34] van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 J. Phys. Chem. A 105 9396
[35] Cady H H and Larson A C 1965 Acta Cryst. 18 485
[36] Borges I, Aquino A J A, Barbatti M and Lischka H 2009 Int. J. Quantum Chem. 109 2348
[37] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Grap. 14 33
[38] Durrant J D and McCammon J A 2011 J. Mol. Grap. Model. 31 5
[39] Scheiner S 1997 Hydrogen Bonding: A Theoretical Perspective (Oxford: Oxford University Press)
[40] Guo F, Zhang H and Cheng X L 2009 J. Theor. Comp. Chem. 9 315
[41] Bondi A 1964 J. Phys. Chem. 68 441
[42] Conroy M W, Oleynik I I, Zybin S V and White C T 2008 J. Appl. Phys. 104 113501
[43] Olinger B, Roof B and Cady H 1978 Symposium on High Dynamic Pressures, Paris, France, p. 3
[44] Zhou T T and Huang F L 2011 J. Phys. Chem. B 115 278
[45] Zhang L, Zybin S V, van Duin A C T, Dasgupta S and Goddard W A 2009 J. Phys. Chem. A 113 10619
[46] Strachan A, van Duin A C T, Chakraborty D, Dasgupta S and Goddard W A 2003 Phys. Rev. Lett. 91 098301
[47] Strachan A, Kober E M, van Duin A C T, Oxgaard J and Goddard W A 2005 J. Chem. Phys. 122 054502
[48] Choi C S and Prince E 1972 Acta Cryst. B 28 2857
[49] Kakar S, Nelson A J, Treusch R, Heske C, Buuren T V, Jimenez I, Pagoria P and Terminello L J 2000 Phys. Rev. B 62 15666
[50] Wu C J, Yang L H and Fried L E 2003 Phys. Rev. B 67 235101
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[3] Raman investigation of hydration structure of iodide and iodate
Zhe Liu(刘喆), Hong-Liang Zhao(赵洪亮), Hong-Zhi Lang(郎鸿志), Ying Wang(王莹), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Sheng-Han Wang(汪胜晗), and Cheng-Lin Sun(孙成林). Chin. Phys. B, 2021, 30(4): 043301.
[4] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[5] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[6] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[7] Rules essential for water molecular undercoordination
Chang Q Sun(孙长庆). Chin. Phys. B, 2020, 29(8): 088203.
[8] Zero-point fluctuation of hydrogen bond in water dimer from ab initio molecular dynamics
Wan-Run Jiang(姜万润)†, Rui Wang(王瑞)†, Xue-Guang Ren(任雪光), Zhi-Yuan Zhang(张志远), Dan-Hui Li(李丹慧), and Zhi-Gang Wang(王志刚)‡. Chin. Phys. B, 2020, 29(10): 103101.
[9] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[10] The substituent effect on the excited state intramolecular proton transfer of 3-hydroxychromone
Yuzhi Song(宋玉志), Songsong Liu(刘松松), Jiajun Lu(陆佳骏), Hui Zhang(张慧), Changzhe Zhang(张常哲), Jun Du(杜军). Chin. Phys. B, 2019, 28(9): 093102.
[11] Effects of Mg2+ on the binding of the CREB/CRE complex: Full-atom molecular dynamics simulations
Song Mao(毛松), Shuai Wang(王帅), Haiyou Deng(邓海游), Ming Yi(易鸣). Chin. Phys. B, 2019, 28(7): 078701.
[12] Enhancement of water self-diffusion at super-hydrophilic surface with ordered water
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷). Chin. Phys. B, 2018, 27(6): 060101.
[13] Excited state intramolecular proton transfer mechanism of o-hydroxynaphthyl phenanthroimidazole
Shuang Liu(刘爽), Yan-Zhen Ma(马艳珍), Yun-Fan Yang(杨云帆), Song-Song Liu(刘松松), Yong-Qing Li(李永庆), Yu-Zhi Song(宋玉志). Chin. Phys. B, 2018, 27(2): 023103.
[14] Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives
Qian Zhao(赵倩), Jian-Xin Nie(聂建新), Wei Zhang(张伟), Qiu-Shi Wang(王秋实), Qing-Jie Jiao(焦清介). Chin. Phys. B, 2017, 26(5): 054502.
[15] Interface states study of intrinsic amorphous silicon for crystalline silicon surface passivation in HIT solar cell
You-Peng Xiao(肖友鹏), Xiu-Qin Wei(魏秀琴), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(4): 048104.
No Suggested Reading articles found!