CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures |
Guo Feng (郭峰)a b c, Zhang Hong (张红)d, Hu Hai-Quan (胡海泉)a b, Cheng Xin-Lu (程新路)c |
a School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252000, China; b Shandong Provincial Key Laboratory of Optical Communication Science and Technology, Liaocheng 252000, China; c Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; d School of Physical Science & Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract To probe the behavior of hydrogen bonds in solid energetic materials, we conduct ReaxFF and SCC-DFTB molecular dynamics simulations of crystalline TATB, RDX, and DATB. By comparing the intra-and inter-molecular hydrogen bonding rates, we find that the crystal structures are stabilized by inter-molecular hydrogen bond networks. Under high-pressure, the inter-and intra-molecular hydrogen bonds in solid TATB and DATB are nearly equivalent. The hydrogen bonds in solid TATB and DATB are much shorter than in solid RDX, which suggests strong hydrogen bond interactions existing in these energetic materials. Stretching of the C-H bond is observed in solid RDX, which may lead to further decomposition and even detonation.
|
Received: 23 March 2013
Revised: 29 October 2013
Accepted manuscript online:
|
PACS:
|
65.40.-b
|
(Thermal properties of crystalline solids)
|
|
82.20.Wt
|
(Computational modeling; simulation)
|
|
82.30.-b
|
(Specific chemical reactions; reaction mechanisms)
|
|
82.30.Rs
|
(Hydrogen bonding, hydrophilic effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11176020) and the Fund from the China Academy of Engineering Physics, China (Grant No. 2011A0302014). |
Corresponding Authors:
Guo Feng
E-mail: gfeng.alan@foxmail.com
|
About author: 65.40.-b; 82.20.Wt; 82.30.-b; 82.30.Rs |
Cite this article:
Guo Feng (郭峰), Zhang Hong (张红), Hu Hai-Quan (胡海泉), Cheng Xin-Lu (程新路) Effects of hydrogen bonds on solid state TATB, RDX, and DATB under high pressures 2014 Chin. Phys. B 23 046501
|
[1] |
Rice B M and Hare J J 2001 J. Phys. Chem. A 106 1770
|
[2] |
Zhang H, Cheung F and Zhao F 2009 Int. J. Quantum Chem. 109 1547
|
[3] |
Melius C F 1990 Chemistry and Physics of Energetic Materials (Amsterdam: The Netherlands)
|
[4] |
Politzer P, Murray J S and Struct J M 1996 J. Mol. Struct. 376 419
|
[5] |
Politzer P and Murray J S 1995 Mol. Phys. 86 251
|
[6] |
Politzer P, Murray J S and Concha M C 1998 J. Phys. Chem. A 102 6697
|
[7] |
Shao J X, Cheng X L, Yang X D and He B 2006 Chin. Phys. 15 329
|
[8] |
Wu C J and Fried L E 1998 "First-principles Study of High Explosive Decomposition Energetics" in: Elventh International Detonation Symposium, Snowmass, Colorado, USA, p. 490
|
[9] |
Fried L E, Manaa M R, Pagoria P F and Simpson R L 2001 Ann. Rev. Mater. Res. 31 291
|
[10] |
Liu H, Zhao J J, Gong Z Z, Ji G F and Wei D Q 2007 Phys. Lett. A 367 383
|
[11] |
Stephen A D, Srinivasan P and Kumaradhas P 2011 Comput. Theor. Chem. 967 250
|
[12] |
Politzer P and Murray J S 2003 Energetic Materials Part 2: Detonation and Combustion, Theoretical and Computational Chemistry (Amsterdam: Elsevier B V) p. 174
|
[13] |
Owens F J 1996 J. Mol. Struct. (Theochem) 370 11
|
[14] |
Muray J S and Politzer P 1990 Chem. Phys. Lett. 168 135
|
[15] |
Rice B M, Samir S and Owens F J 2002 J. Mol. Struct. (Theochem) 583 69
|
[16] |
Xiao H M, Fan J F and Gong X D 1997 Propellants, Explosives, Pyroechnics 22 360
|
[17] |
Zhi C Y Cheng X L and Zhao F 2010 Propellants, Explosives, Pyroechnics 35 555
|
[18] |
Yang Z W, Li H Z, Huang H, Zhou X Q, Li J S and Nie F D 2010 Propellants, Explosives, Pyroechnics 35 1
|
[19] |
Bolton O, Simke L R, Pagoria P H and Matzger A J 2012 Cryst. Growth Des. 12 4311
|
[20] |
Zhang C Y, Wang X C and Huang H 2008 J. Am. Chem. Soc. 130 8359
|
[21] |
Ojeda O U and Çğin T 2011 J. Phys. Chem. B 115 12085
|
[22] |
Kohno Y, Hiyoshi R I, Yamaguchi Y, Matsumoto S, Koseki A, Takahashi O, Yamasaki K and Ueda K 2009 J. Phys. Chem. A 113 2551
|
[23] |
Manaa M R and Fried L E 2012 J. Phys. Chem. C 116 2116
|
[24] |
Ren X P, Zhou B, Li L T and Wang C L 2013 Chin. Phys. B 22 016801
|
[25] |
Li D F, Gao S Q, Sun C L and Li Z W 2012 Chin. Phys. B 21 083301
|
[26] |
Ouyang S L, Wu N N, Sun C L, Liu J Y, Li Z W and Gao S Q 2010 Chin. Phys. B 19 093103
|
[27] |
Chen M, Min R, Zhou J M, Hu H, Lin B, Miao L and Jiang J J 2010 Acta Phys. Sin. 58 5148 (in Chinese)
|
[28] |
Chen C Z, Li P, Lin X Y, Liu C Q, Qiu S H, Wu Y D and Yu C Y 2009 Acta Phys. Sin. 58 2565 (in Chinese)
|
[29] |
Zhang Z H, Han K, Li H P, Tang G, Wu Y X, Wang H T and Bai L 2008 Acta Phys. Sin. 57 3160 (in Chinese)
|
[30] |
Zhao X Y, Wang H, Yan H, Gai Z, Zhao R G and Yang W S 2001 Chin. Phys. 16 392
|
[31] |
Liu L, Liu Y, Zybin S V, Sun H and Goddard W A 2011 J. Phys. Chem. A 115 11016
|
[32] |
Aradi B, Hourahine B and Frauenheim T 2007 J. Phys. Chem. A 111 5678
|
[33] |
Elstner M, Suhai S and Seifert G 1998 Phys. Rev. B 58 7260
|
[34] |
van Duin A C T, Dasgupta S, Lorant F and Goddard W A 2001 J. Phys. Chem. A 105 9396
|
[35] |
Cady H H and Larson A C 1965 Acta Cryst. 18 485
|
[36] |
Borges I, Aquino A J A, Barbatti M and Lischka H 2009 Int. J. Quantum Chem. 109 2348
|
[37] |
Humphrey W, Dalke A and Schulten K 1996 J. Mol. Grap. 14 33
|
[38] |
Durrant J D and McCammon J A 2011 J. Mol. Grap. Model. 31 5
|
[39] |
Scheiner S 1997 Hydrogen Bonding: A Theoretical Perspective (Oxford: Oxford University Press)
|
[40] |
Guo F, Zhang H and Cheng X L 2009 J. Theor. Comp. Chem. 9 315
|
[41] |
Bondi A 1964 J. Phys. Chem. 68 441
|
[42] |
Conroy M W, Oleynik I I, Zybin S V and White C T 2008 J. Appl. Phys. 104 113501
|
[43] |
Olinger B, Roof B and Cady H 1978 Symposium on High Dynamic Pressures, Paris, France, p. 3
|
[44] |
Zhou T T and Huang F L 2011 J. Phys. Chem. B 115 278
|
[45] |
Zhang L, Zybin S V, van Duin A C T, Dasgupta S and Goddard W A 2009 J. Phys. Chem. A 113 10619
|
[46] |
Strachan A, van Duin A C T, Chakraborty D, Dasgupta S and Goddard W A 2003 Phys. Rev. Lett. 91 098301
|
[47] |
Strachan A, Kober E M, van Duin A C T, Oxgaard J and Goddard W A 2005 J. Chem. Phys. 122 054502
|
[48] |
Choi C S and Prince E 1972 Acta Cryst. B 28 2857
|
[49] |
Kakar S, Nelson A J, Treusch R, Heske C, Buuren T V, Jimenez I, Pagoria P and Terminello L J 2000 Phys. Rev. B 62 15666
|
[50] |
Wu C J, Yang L H and Fried L E 2003 Phys. Rev. B 67 235101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|