Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 040703    DOI: 10.1088/1674-1056/23/4/040703
GENERAL Prev   Next  

Theoretical analysis of stack gas emission velocity measurement by optical scintillation

Yang Yang, Dong Feng-Zhong, Ni Zhi-Bo, Pang Tao, Zeng Zong-Yong, Wu Bian, Zhang Zhi-Rong
Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  Theoretical analysis for an online measurement of the stack gas flow velocity based on the optical scintillation method with a structure of two parallel optical paths is performed. The causes of optical scintillation in a stack are first introduced. Then, the principle of flow velocity measurement and its mathematical expression based on cross correlation of the optical scintillation are presented. The field test results show that the flow velocity measured by the proposed technique in this article is consistent with the value tested by the Pitot tube. It verifies the effectiveness of this method. Finally, by use of the structure function of logarithmic light intensity fluctuations, the theoretical explanation of optical scintillation spectral characteristic in low frequency is given. The analysis of the optical scintillation spectrum provides the basis for the measurement of the stack gas flow velocity and particle concentration simultaneously.
Keywords:  optical scintillation      cross correlation      flow velocity      spectrum  
Received:  14 July 2013      Revised:  17 September 2013      Accepted manuscript online: 
PACS:  07.88.+y (Instruments for environmental pollution measurements)  
  07.60.-j (Optical instruments and equipment)  
  42.25.Dd (Wave propagation in random media)  
  92.60.Sz (Air quality and air pollution)  
Fund: Project supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2014BAC17B03) and the National Natural Science Foundation of China (Grant No. 11204320).
Corresponding Authors:  Dong Feng-Zhong     E-mail:  fzdong@aiofm.ac.cn
About author:  07.88.+y; 07.60.-j; 42.25.Dd; 92.60.Sz

Cite this article: 

Yang Yang, Dong Feng-Zhong, Ni Zhi-Bo, Pang Tao, Zeng Zong-Yong, Wu Bian, Zhang Zhi-Rong Theoretical analysis of stack gas emission velocity measurement by optical scintillation 2014 Chin. Phys. B 23 040703

[1] Klopfenstein J R 1998 ISA Trans. 37 257
[2] Sadeghi M M, Peterson R L and Najafi K 2013 J. Micromech. Microeng. 23 085017
[3] Christian W R, Delcher R C, Chen T, Khoshnevisan M, Liescheski P B and Metcalf M A 2012 U.S. Patent Application 13718, 651 [2012-12-18]
[4] Du C, Xu M Y and Mi J C 2010 Acta Phys. Sin. 59 6331 (in Chinese)
[5] Xu M Y, Du C and Mi J C 2011 Acta Phys. Sin. 60 034701 (in Chinese)
[6] Maru K and Hata T 2012 Appl. Opt. 51 8177
[7] Chen A S, Hao J M, Zhou Z P and He K B 2000 Opt. Lett. 25 689
[8] Chen A S, Hao J M and Zhou Z P 2001 China Patent CN1279394 [2001-01-10]
[9] Wang T I and Clifford S F 1975 Opt. Soc. Am. 65 147
[10] Chen J and Shen J Q 2004 J. Shanghai Univ. Technol. 26 503
[11] Yuan Z F 2003 Therm. Power Gener. 3 14
[12] Wang T I 2003 U.S. Patent 6, 611, 319 [2003-8-26]
[13] Liu H L 2006 "The Measurements of Stack Gas Flow Velocity and Particulate Concentration by Optical Scintillation" (Ph. D. Thesis) (Hefei: Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) (in Chinese)
[14] Liu W Q, Liu H L, Zeng Z Y and Jiang Y 2006 Chin. Phys. 15 1777
[15] Rao R Z 2005 Light Propagation in the Turbulent Atmosphere (Hefei: Anhui Scince & Technology Publishing House) p. 190 (in Chinese)
[16] Qian X M, Zhu W Y and Rao R Z 2013 Acta Phys. Sin. 62 044203 (in Chinese)
[17] Wang T I, Ochs G R and Lawrence R S 1981 Appl. Opt. 20 4073
[18] Liu H L, Zeng Z Y and Liu W Q 2006 Opt. Tech. 32 920 (in Chinese)
[19] Zeng Z Y, Liu H L, Jiang Y, Liu W Q and Liu J G 2007 Acta Photon. Sin. 36 1884 (in Chinese)
[20] Tatarski V I (translated by Wen J S, Song Z F, Zeng Z Y and Gu W Y) 1978 Wave Propagation in a Turbulent Medium (Beijing: Science Press) pp. 21, 23 (in Chinese)
[1] Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai. Chin. Phys. B, 2021, 30(6): 060309.
[2] Superfluid phases and excitations in a cold gas of d-wave interacting bosonic atoms and molecules
Zehan Li(李泽汉), Jian-Song Pan, and W Vincent Liu. Chin. Phys. B, 2021, 30(6): 066703.
[3] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[4] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[5] X-ray absorption investigation of the site occupancies of the copper element in nominal Cu3Zn(OH)6FBr
Ruitang Wang(王瑞塘), Xiaoting Li(李效亭), Xin Han(韩鑫), Jiaqi Lin(林佳琪), Yong Wang(王勇), Tian Qian(钱天), Hong Ding(丁洪), Youguo Shi(石友国), and Xuerong Liu(柳学榕). Chin. Phys. B, 2021, 30(4): 046102.
[6] Furi-Martelli-Vignoli spectrum and Feng spectrum of nonlinear block operator matrices
Xiao-Mei Dong(董小梅), De-Yu Wu(吴德玉), and Alatancang Chen(陈阿拉坦仓). Chin. Phys. B, 2021, 30(4): 040201.
[7] Modified scaling angular spectrum method for numerical simulation in long-distance propagation
Xiao-Yi Chen(陈晓义), Ya-Xuan Duan(段亚轩), Bin-Bin Xiang(项斌斌), Ming Li(李铭), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(3): 034203.
[8] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[9] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[10] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[11] A high performance fast-Fourier-transform spectrum analyzer for measuring spin noise spectrums
Yu Tong(仝煜), Lin Wang(王淋), Wen-Zhe Zhang(张闻哲), Ming-Dong Zhu(朱明东), Xi Qin(秦熙), Min Jiang(江敏), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2020, 29(9): 090704.
[12] Estimation of sea clutter inherent Doppler spectrum from shipborne S-band radar sea echo
Jin-Peng Zhang(张金鹏), Yu-Shi Zhang(张玉石), Xin-Yu Xu(许心瑜), Qing-Liang Li(李清亮), Jia-Ji Wu(吴家骥). Chin. Phys. B, 2020, 29(6): 068402.
[13] Imprint of transient electron localization in H2+ using circularly-polarized laser pulse
Jianghua Luo(罗江华), Jun Li(李军), and Huafeng Zhang(张华峰). Chin. Phys. B, 2020, 29(12): 123201.
[14] High efficient Al: ZnO based bifocus metalens in visible spectrum
Pengdi Wang(王鹏迪) and Xianghua Zeng(曾祥华)†. Chin. Phys. B, 2020, 29(10): 104211.
[15] Highly sensitive detection of Rydberg atoms with fluorescence loss spectrum in cold atoms
Xuerong Shi(师雪荣), Hao Zhang(张好), Mingyong Jing(景明勇), Linjie Zhang(张临杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2020, 29(1): 013201.
No Suggested Reading articles found!