Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 086101    DOI: 10.1088/1674-1056/22/8/086101
RAPID COMMUNICATION Prev   Next  

Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy

Wu Mu-Honga b, Li Xiaoc, Pan Dingb, Liu Leib, Yang Xiao-Xiab, Xu Zhib, Wang Wen-Longb, Sui Yua, Bai Xue-Dongb
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China;
b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  Nitrogen-doped single-walled carbon nanotubes (CNx-SWNTs) with tunable dopant concentrations were synthesized by chemical vapor deposition (CVD), and their structure and elemental composition were characterized by using transmission electron microscopy (TEM) in combination with electron energy loss spectroscopy (EELS). By comparing the Raman spectra of pristine and doped nanotubes, we observed the doping-induced Raman G band phonon stiffening and 2D band phonon softening, both of which reflect doping-induced renormalization of the electron and phonon energies in the nanotubes and behave as expected in accord with the n-type doping effect. On the basis of first principles calculations of the distribution of delocalized carrier density in both the pristine and doped nanotubes, we show how the n-type doping occurs when nitrogen heteroatoms are substitutionally incorporated into the honeycomb tube-shell carbon lattice.
Keywords:  single-walled carbon nanotubes      nitrogen doping      chemical vapor deposition      Raman spectroscopy  
Received:  23 April 2013      Revised:  20 May 2013      Published:  27 June 2013
PACS:  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  63.22.Gh (Nanotubes and nanowires)  
  78.30.Na (Fullerenes and related materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004230, 51172273, 11290161, and 11027402), the National Key Basic Research Program of China (Grant Nos. 2012CB933003 and 2013CB932603), and the Innovative Project of the Chinese Academy of Sciences (Grant No. KJCX2-YW-W35).
Corresponding Authors:  Wang Wen-Long, Sui Yu, Bai Xue-Dong     E-mail:  wwl@aphy.iphy.ac.cn; suiyu@hit.edu.cn; xdbai@aphy.iphy.ac.cn

Cite this article: 

Wu Mu-Hong, Li Xiao, Pan Ding, Liu Lei, Yang Xiao-Xia, Xu Zhi, Wang Wen-Long, Sui Yu, Bai Xue-Dong Synthesis of nitrogen-doped single-walled carbon nanotubes and monitoring of doping by Raman spectroscopy 2013 Chin. Phys. B 22 086101

[1] Arnold M S, Green A A, Hulvat J F, Stupp S I and Hersam M C 2006 Nat. Nanotech. 1 60
[2] Liu C H, Liu Y Y, Zhang Y H, Wei R R and Zhang H L 2009 Phys. Chem. Chem. Phys. 11 7257
[3] Bachilo S M, Balzano L, Herrera J E, Pompeo F, Resasco D E and Weisman R B 2003 J. Am. Chem. Soc. 125 11186
[4] Li X L, Tu X M, Zaric S, Welsher K, Seo W S, Zhao W and Dai H J 2007 J. Am. Chem. Soc. 129 15770
[5] Zheng L W, Hu L Q, Xiao X J, Yang F, Lin H and Guo T L 2011 Chin. Phys. B 20 128502
[6] Maciel I O, Campos-Delgado J, Cruz-Silva E, Pimenta M A, Sumpter B G, Meunier V, López-Urías F, Muñoz-Sandoval E, Terrones H, Terrones M and Jorio A 2009 Nano Lett. 9 2267
[7] Ayala P, Arenal R, Loiseau A, Rubio A and Pichler T 2010 Rev. Mod. Phys. 82 1843
[8] Ayala P, Arenal R, Rümmeli M, Rubio A and Pichler T 2010 Carbon 48 575
[9] Jin L, Fu H G, Xie Y and Yu H T 2012 Chin. Phys. B 21 057901
[10] Susi T, Kaskela A, Zhu Z, Ayala P, Arenal R, Tian Y, Laiho P, Mali J, Nasibulin A G, Jiang H, Lanzani G, Stephan O, Laasonen K, Pichler T, Loiseau A and Kauppinen E I 2011 Chem. Mater. 23 2201
[11] Liu Y, Jin Z, Wang J Y, Cui R L, Sun H, Peng F, Wei L, Wang Z X, Liang X L, Peng L M and Li Y 2011 Adv. Funct. Mater. 21 986
[12] Monteiro F H, Larrude D G, Maia M, da Costa E H, Terrazos L A, Capaz R B and Freire F L Jr 2012 J. Phys. Chem. C 116 3281
[13] Wang E G 2006 J. Mater. Res. 21 2767
[14] Jorio A, Dresselhaus G and Dresselhaus M S 2008 Carbon Nanotubes: Advanced Topics in Synthesis, Properties and Applications (Berlin: Springer-Verlag)
[15] Maciel I O, Anderson N, Pimenta M A, Hartschuh A, Qian H H, Terrones M, Terrones H, Campos-Delgado J, Rao A M, Novotny L and Jorio A 2008 Nat. Mater. 7 878
[16] Tsang J C, Freitag M, Perebeinos V, Liu J and Avouris Ph 2007 Nat. Nanotech. 2 725
[17] Das A, Sood A K, Govindaraj A, Saitta A M, Lazzeri M, Mauri F and Rao C N R 2007 Phys. Rev. Lett. 99 136803
[18] Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C and Mauri F 2007 Nat. Mater. 6 198
[19] Das A, Pisana S, Chakraborty B, Piscanec S, Saha S K, Waghmare U V, Novoselov K S, Krishnamurthy H R, Geim A K, Ferrari A C and Sood A K 2008 Nat. Nanotech. 3 210
[20] Wang W L, Bai X D, Xu Z, Liu S and Wang E G 2006 Chem. Phys. Lett. 419 81
[21] Wang W L, Bai X D, Liu K H, Xu Z, Golberg D, Bando Y and Wang E G 2006 J. Am. Chem. Soc. 128 6530
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[26] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[27] Glerup M, Steinmetz J, Samaille D, Stéphan O, Enouz S, Loiseau A, Roth S and Bernier P 2004 Chem. Phys. Lett. 387 193
[28] Rao A M, Eklund P C, Bandow S, Thess A and Smalley R E 1997 Nature 388 257
[29] Dresselhaus M S, Dresselhaus G, Saito R and Jorio A 2005 Phys. Rep. 409 47
[30] Piscanec S, Lazzeri M, Mauri F, Ferrari A C and Robertson J 2004 Phys. Rev. Lett. 93 185503
[1] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[2] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[3] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[4] Annealing-enhanced interlayer coupling interaction inGaS/MoS2 heterojunctions
Xiuqing Meng(孟秀清), Shulin Chen(陈书林), Yunzhang Fang(方允樟), Jianlong Kou(寇建龙). Chin. Phys. B, 2019, 28(7): 078101.
[5] Direct deposition of graphene nanowalls on ceramic powders for the fabrication of a ceramic matrix composite
Hai-Tao Zhou(周海涛), Da-Bo Liu(刘大博), Fei Luo(罗飞), Ye Tian(田野), Dong-Sheng Chen(陈冬生), Bing-Wei Luo(罗炳威), Zhang Zhou(周璋), Cheng-Min Shen(申承民). Chin. Phys. B, 2019, 28(6): 068102.
[6] Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣). Chin. Phys. B, 2019, 28(11): 118101.
[7] Temperature-dependent Raman spectroscopic study of ferroelastic K2Sr(MoO4)
Ji Zhang(张季), De-Ming Zhang(张德明), Ran-Ran Zhang(张冉冉). Chin. Phys. B, 2018, 27(11): 117801.
[8] Structural deformation of nitro group of nitromethane molecule in liquid phase in an intense femtosecond laser field
Chang Wang(王畅), Hong-lin Wu(吴红琳), Yun-fei Song(宋云飞), Yan-qiang Yang(杨延强). Chin. Phys. B, 2017, 26(9): 094208.
[9] Synthesis and magnetotransport properties of Bi2Se3 nanowires
Kang Zhang(张亢), Haiyang Pan(潘海洋), Zhongxia Wei(魏仲夏), Minhao Zhang(张敏昊), Fengqi Song(宋风麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(9): 096101.
[10] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[11] Different angle-resolved polarization configurations of Raman spectroscopy: A case on the basal and edge plane of two-dimensional materials
Xue-Lu Liu(刘雪璐), Xin Zhang(张昕), Miao-Ling Lin(林妙玲), Ping-Heng Tan(谭平恒). Chin. Phys. B, 2017, 26(6): 067802.
[12] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
He-Ju Xu(许贺菊), Jian-Song Mi(米建松), Yun Li(李云), Bin Zhang(张彬), Ri-Dong Cong(丛日东), Guang-Sheng Fu(傅广生), Wei Yu(于威). Chin. Phys. B, 2017, 26(12): 128102.
[13] An easy way to controllably synthesize one-dimensional SmB6 topological insulator nanostructures and exploration of their field emission applications
Xun Yang(杨汛), Hai-Bo Gan(甘海波), Yan Tian(田颜), Ning-Sheng Xu(许宁生), Shao-Zhi Deng(邓少芝), Jun Chen(陈军), Huanjun Chen(陈焕君), Shi-Dong Liang(梁世东), Fei Liu(刘飞). Chin. Phys. B, 2017, 26(11): 118103.
[14] Structural evolution study of additions of Sb2S3 and CdS into GeS2 chalcogenide glass by Raman spectroscopy
Hai-Tao Guo(郭海涛), Ming-Jie Zhang(张鸣杰), Yan-Tao Xu(许彦涛), Xu-Sheng Xiao(肖旭升), Zhi-Yong Yang(杨志勇). Chin. Phys. B, 2017, 26(10): 104208.
[15] Zero and controllable thermal expansion in HfMgMo3-xWxO12
Tao Li(李涛), Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Meng-Di Zhang(张孟迪), Hong Lian(连虹), Ying Zhang(张莹), Er-Jun Liang(梁二军), Yu-Xiao Li(李玉晓). Chin. Phys. B, 2017, 26(1): 016501.
No Suggested Reading articles found!