Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 066802    DOI: 10.1088/1674-1056/22/6/066802

First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh

Niu Wen-Xiaa, Zhang Hongb, Gong Minb, Cheng Xin-Lua
a Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  In the present paper we give a detailed report on the results of our first-principles investigations of Ar adsorptions at the four high symmetry sites on M (111) (M = Pd, Pt, Cu, and Rh) surfaces. Our studies indicate that the most stable adsorption sites of Ar on Pd (111) and Pt (111) surfaces are found to be the fcc-hollow sites. However, for Ar adsorptions on Cu (111) and Rh (111) surfaces, the most favorable site is the on-top site. The density of states (DOS) is analyzed for Ar adsorption on M (111) surfaces, and it is concluded that the adsorption behavior is dominated by the interaction between 3s, 3p orbits of Ar atoms and the d orbit of the base metal atoms.
Keywords:  density-functional theory      binding energy      electronic structure  
Received:  30 June 2012      Revised:  29 November 2012      Published:  01 May 2013
PACS:  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  68.47.De (Metallic surfaces) (Work functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074176), the National Natural Science Foundation of China (Grant No. 10976019), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100181110080).
Corresponding Authors:  Zhang Hong     E-mail:

Cite this article: 

Niu Wen-Xia, Zhang Hong, Gong Min, Cheng Xin-Lu First-principles study of Ar adsorptions on the (111) surfaces of Pd, Pt, Cu, and Rh 2013 Chin. Phys. B 22 066802

[1] Li Sh, Yuriko O and Tetsuya T 2010 J. Phys. Chem. C 114 3544
[2] Bruch L W, Cole M W and Zaremba E 1997 Physical Adsorption: Forces and Phenomena (Oxford: Oxford Science Press)
[3] Juarez L F, Da Silva, Catherine S and Matthias S 2003 Phys. Rev. Lett. 90 066104
[4] Desjonquéres M C and Spanjaard D 1995 Concepts in Surface Science (New York: Springer)
[5] Vidali G, Ihm G, Kim H Y and Cole M W 1991 Surf. Sci. Rep. 12 135
[6] Juarez L F, Da Silva, Catherine S and Matthias S 2005 Phys. Rev. B 72 075424
[7] Juarez L F, Da Silva and Catherine S 2008 Phys. Rev. B 77 045401
[8] Seyller Th, Caragiu M, Diehl R D, Kaukasoina P and Lindroos M 1998 Chem. Phys. Lett. 291 567
[9] Caragiu M, Seyller Th and Diehl R D 2002 Phys. Rev. B 66 195411
[10] Narloch B and Menzel D 1997 Chem. Phys. Lett. 290 163
[11] Seyller Th, Caragiu M, Diehl R D, Kaukasoina P and Lindroos M 1999 Phys. Rev. B 60 11084
[12] Seyller Th, Caragiu M and Diehl R D 2000 Surf. Sci. 454 55
[13] Weiss P S and Eigler D M 1992 Phys. Rev. Lett. 69 2240
[14] Diehl R D, Seyller Th, Caragiu M, Leatherman G S, Ferralis N, Pussi K, Kaukasoina P and Lindroos M 2004 J. Phys.: Condens. Matter 16 S2839
[15] Caragiu M, Letherman G S, Seyller Th and Diehl R D 2001 Surf. Sci. 475 89
[16] Hohenberg P and Kohn W 1964 Phys. Rev. 139 864
[17] Kohn W and Sham L J 1965 Phys. Rev. 140 1133
[18] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M J, Refson K and Payne M C 2005 Zeitschrift Fur Kristallographie 220 567
[19] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Wang M M, Ning H, Tao X M and Tan M Q 2011 Acta Phys. Sin. 60 047301 (in Chinese)
[22] Scheffler M and Stampfl C 2000 "Theory of Adsorption on Metal Substrates", in: Horn K and Scheffler M ed. Handbook of Surface Science, Vol. 2. Electronic Structure (Amsterdam: Elsevier) pp. 286-357
[23] Kittel C 1996 Introduction to Solid State Physics, 7th edn. (New York: Wiley)
[24] Villars P and Calvert L D 1985 Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM: Metals Park)
[25] Kittel C 1986 Introduction to Solid State Physics, 6th edn. (New York: Wiley)
[26] Ganduglia-Pirovano M V and Scheffler M 1999 Phys. Rev. B 59 15533
[27] Wandelt K and Hulse J E 1984 J. Chem. Phys. 80 1340
[28] Zeppenfeld P 2001 Physics of Covered Solid Surfaces Group III, Vol. 42 (Berlin: Springer-Verlag) p. 67
[29] Hölzl J, Schulte F K and Wagner H 1979 "Work Function of Metals," in Solid State Physics, Springer Tracts Modern Physics Vol. 85 (Berlin: Springer)
[30] Lide D R 1995 CRC Handbook of Chemistry and Physics 76th edn. (Boca Raton: CRC Press) pp. 12-123
[31] Ohtani H, Van Hove M A and Somarjai G A 1987 Surf. Sci. 187 372
[32] Silvestrelli P L, Ambrosetti A, Grubisic S and Ancilotto F 2012 Phys. Rev. B 85 165405
[33] Niu W X and Zhang H 2012 Chin. Phys. B 21 026802
[34] Li W and Li D Y 2005 J. Chem. Phys. 122 064708
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[3] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[4] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[5] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[6] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[7] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[10] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[11] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[12] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[13] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[14] HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility
Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林). Chin. Phys. B, 2020, 29(2): 023102.
[15] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
No Suggested Reading articles found!