Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(5): 057701    DOI: 10.1088/1674-1056/22/5/057701
REVIEW Prev   Next  

Review of graphene-based strain sensors

Zhao Jinga b, Zhang Guang-Yub, Shi Dong-Xiab
a Renmin University of China, Department of Physics, Beijing 100872, China;
b Nanoscale Physics and Device Laboratory, Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper, we review various types of grapheme-based strain sensors. Graphene is a monolayer of carbon atoms, which exhibits prominent electrical and mechanical properties and can be a good candidate in compact strain sensor applications. However, a perfect graphene is robust and has a low piezoresistive sensitivity. So scientist are driven to increase the sensitivity using different kinds of methods since the first graphene-based strain sensor was reported. We give a comprehensive review of graphene-based strain sensors with different structures and mechanisms. It is obvious that graphene offers some advantages and has potential for the strain sensor application in the near future.
Keywords:  graphene      strain sensor      gauge factor  
Received:  04 February 2013      Revised:  13 March 2013      Accepted manuscript online: 
PACS:  77.65.Ly (Strain-induced piezoelectric fields)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.40.Lm (Deformation, plasticity, and creep)  
  73.61.Wp (Fullerenes and related materials)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB934500) and the National Natural Science Foundation of China (Grant No. 91223204).
Corresponding Authors:  Shi Dong-Xia     E-mail:

Cite this article: 

Zhao Jing, Zhang Guang-Yu, Shi Dong-Xia Review of graphene-based strain sensors 2013 Chin. Phys. B 22 057701

[1] Thomason W 1856 Proc. R. Soc. 8 546
[2] Tomlinson H 1876 Proc. R. Soc. 25 451
[3] Peterson K F 1982 Proc. IEEE 70 420
[4] Bernstein D, Godfrey C, Klein A and Shimmin W 1968 Behaviour of Dense Media under High Dynamic Pressures 35 461
[5] Millett J C F, Bourne N K and Rosenberg Z 1996 J. Phys. D. Appl. Phys. 29 2466
[6] Barlian A A, Park W T, Mallon J R, Rastegar A J and Pruitt B L 2009 Proc. IEEE 97 513
[7] Brantley W A 1973 J. Appl. Phys. 44 534
[8] Blouin D R P 2004 Meas. Sci. Technol. 15 859
[9] Rolnick H 1930 Phys. Rev. 36 0506
[10] Werner M R and Fahrner W R 2001 IEEE Transactions on Industrial Electronics 48 249
[11] Tombler T W, Zhou C W, Alexseyev L, Kong J, Dai H J, Lei L, Jayanthi C S, Tang M J and Wu S Y 2000 Nature 405 769
[12] Cao J, Wang Q and Dai H J 2003 Phys. Rev. Lett. 90 157601
[13] Grow R J, Wang Q, Cao J, Wang D W and Dai H J 2005 Appl. Phys. Lett. 86 093104
[14] Dharap P, Li Z L, Nagarajaiah S and Barrera E V 2004 Nanotechnology 15 379
[15] Fu X W, Liao Z M, Zhou J X, Zhou Y B, Wu H C, Zhang R, Jing G Y, Xu J, Wu X S, Guo W L and Yu D P 2011 Appl. Phys. Lett. 99 213107
[16] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[17] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[18] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[19] Geim A K 2009 Science 324 1530
[20] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[21] Miao F, Wijeratne S, Zhang Y, Coskun U C, Bao W and Lau C N 2007 Science 317 1530
[22] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
[23] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[24] Park S and Ruoff R S 2009 Nat. Nanotechnol. 4 217
[25] Schniepp H C, Li J L, McAllister M J, Sai H, Herrera-Alonso M, Adamson D H, Prud'homme R K, Car R, Saville D A and Aksay I A 2006 J. Phys. Chem. B 110 8535
[26] Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[27] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[28] Li X S, Cai W W, An J H, Kim S, Nah J, Yang D X, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[29] Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S and Kong J 2009 Nano Lett. 9 30
[30] Yang W, He C L, Zhang L C, Wang Y, Shi Z W, Cheng M, Xie G B, Wang D M, Yang R, Shi D X and Zhang G Y 2012 Small 8 1429
[31] Hempel M, Nezich D, Kong J and Hofmann M 2012 Nano Lett. 12 5714
[32] Pellegrino F M D, Angilella G G N and Pucci R 2012 High Pressure Res. 32 18
[33] Choi S M, Jhi S H and Son Y W 2010 Nano Lett. 10 3486
[34] Cocco G, Cadelano E and Colombo L 2010 Phys. Rev. B 81 241412
[35] Jiang J W and Wang J S 2012 Europhys. Lett. 97 36004
[36] Lu Y G J 2010 Nano Res. 3 189
[37] Farjam M and Rafii-Tabar H 2009 Phys. Rev. B 80 167401
[38] Guinea F, Geim A K, Katsnelson M I and Novoselov K S 2010 Phys. Rev. B 81 035408
[39] Jin C H, Lan H P, Peng L M, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 205501
[40] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y and Hong B H 2009 Nature 457 706
[41] Yu T, Ni Z H, Du C L, You Y M, Wang Y Y and Shen Z X 2008 J. Phys. Chem. C 112 12602
[42] Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K and Ferrari A C 2009 Phys. Rev. B 79 205433
[43] Yoon D, Son Y W and Cheong H 2011 Phys. Rev. Lett. 106 155502
[44] Zhang Y B, Brar V W, Wang F, Girit C, Yayon Y, Panlasigui M, Zettl A and Crommie M F 2008 Nat. Phys. 4 627
[45] Teague M L, Lai A P, Velasco J, Hughes C R, Beyer A D, Bockrath M W, Lau C N and Yeh N C 2009 Nano Lett. 9 2542
[46] Huang M Y, Pascal T A, Kim H, Goddard W A and Greer J R 2011 Nano Lett. 11 1241
[47] Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H and Ahn J H 2010 Nano Lett. 10 490
[48] Wang Y, Yang R, Shi Z W, Zhang L C, Shi D X, Wang E G and Zhang Y Z 2011 Acs Nano 5 3645
[49] Kim Y J, Cha J Y, Ham H, Huh H, So D S and Kang I 2011 Curr. Appl. Phys. 11 S350
[50] Hempel M, Nezich D, Kong J and Hofmann M 2012 Nano Lett. 12 5714
[51] Li X, Zhang R J, Yu W J, Wang K L, Wei J Q, Wu D H, Cao A Y, Li Z H, Cheng Y, Zheng Q S, Ruoff R Sand Zhu H W 2012 Sci Rep-Uk 2 870
[52] Zhao J, He C L, Yang R, Shi Z W, Cheng M, Yang W, Xie G B, Wang D M, Shi D X and Zhang G Y 2012 Appl. Phys. Lett. 101 063112
[53] Zhang X W, Pan Y, Zheng Q and Yi X S 2000 J. Polym. Sci. Pol. Phys. 38 2739
[54] Eswaraiah V, Balasubramaniam K and Ramaprabhu S 2012 Nanoscale 4 1258
[55] Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574
[56] Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H and Bao Z N 2011 Nat. Nanotechnol. 6 788
[57] Kim D H, Lu N S, Ma R, Kim Y S, Kim R H, Wang S D, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L Z, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y G, Coleman T and Rogers J A 2011 Science 333 838
[1] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[2] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[3] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[4] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[5] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[6] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[7] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[8] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[9] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[10] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[11] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[12] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[13] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[14] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[15] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
No Suggested Reading articles found!