Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047802    DOI: 10.1088/1674-1056/22/4/047802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis of frequency selective surface absorbers via a novel equivalent circuit method

Liu Li-Guo, Wu Wei-Wei, Mo Jin-Jun, Fu Yun-Qi, Yuan Nai-Chang
College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  An equivalent circuit (EC) method for absorbers design is proposed in this paper. Without using full-wave analysis, the EC method can predict the performance of the absorbers. This method is employed to synthesize broadband absorbers by inserting the resistors respectively into the single- and double-square loops structures, then two different prototypes with broadband absorbing frequency bands are manufactured and measured. By comparisons with the results both by using the full-wave analysis and by the measurements, the correctness of the new EC method is verified. Some factors which affect the absorbing bandwidth are also investigated. Due to its fast and accurate characteristics, the EC method which can be theoretically applied to arbitrary FSS is a good candidate for broadband design of the absorbers.
Keywords:  frequency selective surfaces      equivalent circuit      absorber     
Received:  07 October 2012      Published:  01 March 2013
PACS:  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the Science Foundation for New Century Excellent Talents in University of China (Grant No. NCET-10-0894).
Corresponding Authors:  Liu Li-Guo     E-mail:  liguoliu99@gmail.com

Cite this article: 

Liu Li-Guo, Wu Wei-Wei, Mo Jin-Jun, Fu Yun-Qi, Yuan Nai-Chang Analysis of frequency selective surface absorbers via a novel equivalent circuit method 2013 Chin. Phys. B 22 047802

[1] Agrawal V and Imbriale W 1979 IEEE Trans. Antennas Propag. 27 466
[2] Wu T K 1994 IEEE Trans. Antennas Propag. 42 2369
[3] Munk B A 2000 Frequency Slective Surfaces -- Theory and Design (New York: John Wiley & Sons)
[4] Gustafsson M and Karlsson A 2006 IEEE Trans. Antennas Propag. 54 1897
[5] Saleh A A M and Semplak R A 1976 IEEE Trans. Antennas Propag. 24 780
[6] Pelton E L and Munk B A 1974 IEEE Trans. Antennas Propag. 22 799
[7] Sievenpiper D, Zhang L, Broas R F J, Alexopolous N G and Yablonovitch E 1999 IEEE Trans. Microwave Theory Techniques 47 2059
[8] Costa F, Gempvesi S and Monorchio A 2009 IEEE Antennas Wireless & Propagation Letters 8 1341
[9] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[10] Wang X D, Ye Y H, Ma J and Jiang M P 2010 Chin. Phys. Lett. 27 94101
[11] Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B and Oghenemuero G 2012 Chin. Phys. B 21 038501
[12] Gu C, Qu S B, Pei Z B, Xu Z, Liu J and Gu W 2011 Chin. Phys. B 20 017801
[13] Yuan J and Shen Z X 2007 IEEE Antennas Wireless & Propagation Lett. 6 1536
[14] Costa F, Monorchio A and Manara G 2012 IEEE Trans. Antennas Propag. 54 35
[15] Costa F and Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2740
[16] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 Opt. Express 19 9401
[17] Marcuvitz N 1951 Waveguide Handbook (New York: McGraw-Hill)
[18] Anderson I 1975 Bell System Technical Journal 54 1725
[19] Langley R J and Drinkwater A J 1982 IEE Proceedings H -- Microwaves Optics and Antennas 129 1
[20] Langley R J and Parker E A 1982 Electron. Lett. 18 294
[21] Langley R J and Parker E A 1983 Electron. Lett. 19 675
[22] Lee C K and Langley R J 1985 IEE Proceedings H -- Microwaves Optics and Antennas 132 395
[23] Yilmaz A E and Kuzuoglu M 2009 Radio Engineering 18 95
[24] Renings A, Otto S, Caloz C, Lauer A, Bilgic W and Waldow P 2006 Int. J. Numer. Model. 19 141
[25] Rennings A, Otto S, Lauer A, Caloz C and Waldow P 2006 Proc. European Microwave Association 2 71
[26] Wu X H, Kishk A A and Glisson A W 2006 IEEE Trans. Antennas Propag. 54 2731
[27] Costa F and Monorchio A 2011 PIER 111 467
[1] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[2] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[3] Actively tunable polarization-sensitive multiband absorber based on graphene
Ai-Li Cao(曹爱利), Kun Zhang(张昆), Jia-Rui Zhang(张佳瑞), Yan Liu(刘燕), and Wei-Jin Kong(孔伟金). Chin. Phys. B, 2020, 29(11): 114205.
[4] CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松). Chin. Phys. B, 2019, 28(9): 094203.
[5] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[6] Realization of THz dualband absorber with periodic cross-shaped graphene metamaterials
Chunzhen Fan(范春珍), Yuchen Tian(田雨宸), Peiwen Ren(任佩雯), Wei Jia(贾微). Chin. Phys. B, 2019, 28(7): 076105.
[7] Equivalent electromagnetic parameters for microwave metamaterial absorber using a new symmetry model
Junming Zhang(张峻铭), Donglin He(何东霖), Guowu Wang(王国武), Peng Wang(王鹏), Liang Qiao(乔亮), Tao Wang(王涛), Fashen Li(李发伸). Chin. Phys. B, 2019, 28(5): 058401.
[8] Design of scale model of plate-shaped absorber in a wide frequency range
Li-Ming Yuan(袁黎明), Yong-Gang Xu(许勇刚), Wei Gao(高伟), Fei Dai(戴飞), Qi-Lin Wu(吴琪琳). Chin. Phys. B, 2018, 27(4): 044101.
[9] Observation of self-Q-switching in bulk Yb: GdYSiO laser
Shuang Gong(公爽), Jin-Rong Tian(田金荣), He-Yang Guo Yu(郭于鹤洋), Zi-Kai Dong(董自凯), Chang-Xing Xu(许昌兴), Wen-Ping Zhang(张文平), Yan-Rong Song(宋晏蓉). Chin. Phys. B, 2018, 27(4): 044202.
[10] Broadband microwave absorption properties of polyurethane foam absorber optimized by sandwiched cross-shaped metamaterial
Long-Hui He(贺龙辉), Lian-Wen Deng(邓联文), Heng Luo(罗衡), Jun He(贺君), Yu-Han Li(李宇涵), Yun-Chao Xu(徐运超), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2018, 27(12): 127801.
[11] Nonlinear coherent perfect photon absorber in asymmetrical atom-nanowires coupling system
Xiuwen Xia(夏秀文), Xinqin Zhang(张新琴), Jingping Xu(许静平), Mutian Cheng(程木田), Yaping Yang(羊亚平). Chin. Phys. B, 2018, 27(11): 114205.
[12] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[13] Improved high-frequency equivalent circuit model based on distributed effects for SiGe HBTs with CBE layout
Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进), Jin-Zhong Zhang(张金中), Yan-Ling Shi(石艳玲). Chin. Phys. B, 2017, 26(9): 098502.
[14] Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064μm
Si-Hang Wei(魏思航), Ben Ma(马奔), Ze-Sheng Chen(陈泽升), Yong-Ping Liao(廖永平), Hong-Yue Hao(郝宏玥), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(7): 074208.
[15] An optimized fitting function with least square approximation inInAs/AlSb HFET small-signal model for characterizingthe frequency dependency of impact ionization effect
He Guan(关赫), Hui Guo(郭辉). Chin. Phys. B, 2017, 26(5): 058501.
No Suggested Reading articles found!