Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047702    DOI: 10.1088/1674-1056/22/4/047702

Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator

He Hui-Jinga, Yang Jia-Shia, Zhang Wei-Pingb, Wang Jic
a Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, USA;
b 1785 Pebblewood Lane, Hoffman Estates, IL 60195, USA;
c Piezoelectric Device Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
Abstract  We study the effects of couplings to flexure and face-shear modes on the admittance of an AT-cut quartz plate thickness-shear mode resonator. Mindlin's two-dimensional equations for piezoelectric plates are employed. Electrically forced vibration solutions are obtained for three cases: pure thickness-shear mode alone; two coupled modes of thickness shear and flexure; and three coupled modes of thickness shear, flexure, and face shear. Admittance is calculated and its dependence on the driving frequency and the length/thickness ratio of the resonator is examined. Results show that near the thickness-shear resonance, admittance assumes maxima, and that for certain values of the length/thickness ratio, the coupling to flexure causes severe admittance drops, while the coupling to the face-shear mode causes additional admittance changes that were previously unknown and hence are not considered in current resonator design practice.
Keywords:  quartz      plate      resonance      resonator     
Received:  23 June 2012      Published:  01 March 2013
PACS:  77.65.Fs (Electromechanical resonance; quartz resonators)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 10932004, 11072116, and 10772087) and the Doctoral Program Fund of Ministry of Education of China (Grant No. 20093305110003/JW). Additional Funds were from the Sir Y. K. Pao Chair Professorship, the K. C. Wong Magna Fund through Ningbo University, and the K. C. Wong Education Foundation in Hong Kong. The project also supported in part by the US Army Research Laboratory/US Army Research Office (Grant No. W911NF-10-1-0293).
Corresponding Authors:  Yang Jia-Shi     E-mail:

Cite this article: 

He Hui-Jing, Yang Jia-Shi, Zhang Wei-Ping, Wang Ji Effects of mode coupling on the admittance of an AT-cut quartz thickness-shear resonator 2013 Chin. Phys. B 22 047702

[1] Mindlin R D 1951 J. Appl. Phys. 22 316
[2] Mindlin R D and Lee P C Y 1966 Int. J. Solids Structures 2 125
[3] Mindlin R D and Spencer W J 1967 J. Acoust. Soc. Am. 42 1268
[4] Tiersten H F 1985 J. Acoust. Soc. Am. 78 1684
[5] Yong Y K and Stewart J T 1991 IEEE Trans. Ultrason., Ferroelect., Freq. Control 38 67
[6] Wang J and Zhao W H 2005 IEEE Trans. Ultrason., Ferroelect., Freq. Control 52 2023
[7] Wang J N, Hu Y T and Yang J S 2010 IEEE Trans. Ultrason., Ferroelect., Freq. Control 57 1146
[8] Chen G J, Wu R X, Wang J, Du J K and Yang J S 2012 IEEE Trans. Ultrason., Ferroelect., Freq. Control 59 811
[9] Wang J and Yang J S 2000 Appl. Mech. Rev. 53 87
[10] Mindlin R D 1952 J. Appl. Phys. 23 83
[11] Tiersten H F and Mindlin R D 1962 Quart. Appl. Math. 20 107
[12] Bleustein J L and Tiersten H F 1968 J. Acoust. Soc. Am. 43 1311
[13] Mindlin R D 1974 Int. J. Solids Structures 10 453
[14] Zhang W P 1998 Proc. 1998 IEEE Int. Freq. Control Sym. 981
[15] Zhang W P and Doyle M 2000 Mechanics of Electromagnetic Materials and Structures, eds.Yang J S, Maugin G A (Amsterdam: IOS) p. 147
[16] Lee P C Y and Wang J 1996 J. Appl. Phys. 79 3411
[17] Lee P C Y and Lin W S 1998 J. Appl. Phys. 83 7822
[18] Wang J, Yu J D, Yong Y K and Imai T 2000 Int. J. Solids Structures 37 5653
[19] Wang J, Zhao W H and Du J K 2006 Ultrasonics. 44 869
[20] Zhang C L, Chen W Q and Yang J S 2009 Int. J. Appl. Elect. Mech. 31 207
[21] Yong Y K, Patel M S and Tanaka M 2010 IEEE Trans. Ultrason., Ferroelect., Freq. Control 57 1831
[22] Mindlin R D 1961 Quart. Appl. Math. 19 51
[23] Mindlin R D 1972 Int. J. Solids Structures 8 895
[24] Lee P C Y, Syngellakis S and Hou J P 1987 J. Appl. Phys. 61 1249
[25] Yang J S 2006 The Mechanics of Piezoelectric Structures (Singapore: World Scientific) Chap. 2 and Chap. 4
[26] Wang W Y, Zhang C, Zhang Z T, Liu Y and Feng G P 2009 Chin. Phys. B 18 795
[27] Ma T F, Zhang C, Feng G P and Jiang X N 2010 Chin. Phys. B 19 087701
[28] Ma T F, Zhang C, Jiang X N and Feng G P 2011 Chin. Phys. B 20 057701
[29] Tiersten H F 1969 Linear Piezoelectric Plate Vibrations (New York: Plenum) p. 186
[1] Dynamics and coherence resonance in a thermosensitive neuron driven by photocurrent
Ying Xu(徐莹), Minghua Liu(刘明华), Zhigang Zhu(朱志刚), Jun Ma(马军). Chin. Phys. B, 2020, 29(9): 098704.
[2] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[3] Resonance-enhanced two-photon ionization of hydrogen atom in intense laser field investigated by Bohmian-mechanics
Yang Song(宋阳), Shu Han(韩姝), Yu-Jun Yang(杨玉军), Fu-Ming Guo(郭福明), Su-Yu Li(李苏宇). Chin. Phys. B, 2020, 29(9): 093204.
[4] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[5] Temperature dependent terahertz giant anisotropy and cycloidal spin wave modes in BiFeO3 single crystal
Fan Liu(刘凡), Zuanming Jin(金钻明), Xiumei Liu(刘秀梅), Yuqing Fang(方雨青), Jiajia Guo(国家嘉), Yan Peng(彭滟), Zhenxiang Cheng(程振祥), Guohong Ma(马国宏), Yiming Zhu(朱亦鸣). Chin. Phys. B, 2020, 29(7): 077804.
[6] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
[7] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[8] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[9] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[10] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[11] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[12] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[13] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[14] Analysis of iris-loaded resonance cavity in miniaturized maser
Zu-Gen Guo(郭祖根), Yong Zhang(张勇), Tao Tang(唐涛), Zhan-Liang Wang(王战亮), Yu-Bin Gong(宫玉彬), Fei Xiao(肖飞), Hua-Rong Gong(巩华荣). Chin. Phys. B, 2020, 29(5): 050601.
[15] Asymmetric stochastic resonance under non-Gaussian colored noise and time-delayed feedback
Ting-Ting Shi(石婷婷), Xue-Mei Xu(许雪梅), Ke-Hui Sun(孙克辉), Yi-Peng Ding(丁一鹏), Guo-Wei Huang(黄国伟). Chin. Phys. B, 2020, 29(5): 050501.
No Suggested Reading articles found!