Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 030304    DOI: 10.1088/1674-1056/22/3/030304
GENERAL Prev   Next  

Comparison between non-Markovian dynamics with and without rotating wave approximation

Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics,Hunan Normal University, Changsha 410081, China
Abstract  In the limit of weak coupling between the system and its reservoir, we derive the time-convolutionless (TCL) non-Markovian master equation for a two-level system interacting with a zero-temperature structured environment with no rotating wave approximation (NRWA). By comparing with the dynamics with RWA, we demonstrate the impact of the RWA on the system dynamics, as well as the effects of non-Markovianity on the preservation of atomic coherence, squeezing, and entanglement.
Keywords:  open quantum system      rotating wave approximation      non-Markovianity  
Received:  11 July 2012      Revised:  20 August 2012      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11275064 and 11075050), the National Basic Research Program of China (Grant No. 2007CB925204), and the Construct Program of the National Key Discipline, China.
Corresponding Authors:  Zeng Hao-Sheng     E-mail:

Cite this article: 

Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生) Comparison between non-Markovian dynamics with and without rotating wave approximation 2013 Chin. Phys. B 22 030304

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Lindblad G 1976 Commun. Math. Phys. 48 119
[3] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[4] Kubota Y and Nobusada K 2009 J. Phys. Soc. Jpn. 78 114603
[5] Ji Y H and Hu J J 2010 Chin. Phys. B 19 060304
[6] Shao J 2004 J. Chem. Phys. 120 5053
[7] Chin A W, Datta A, Caruso F, Huelga S F and Plenio M B 2010 New J. Phys. 12 065002
[8] Dijkstra A G and Tanimura Y 2010 Phys. Rev. Lett. 104 250401
[9] Huang L Y and Fang M F 2010 Chin. Phys. B 19 090318
[10] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[11] Rivas á, Huelga S F and Plenio M B 2010 Phys. Rev. Lett. 105 050403
[12] Usha Devi A R, Rajagopal A K and Sudha 2011 Phys. Rev. A 83 022109
[13] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[14] Hou S C, Yi X X, Yu S X and Oh C H 2011 Phys. Rev. A 83 062115
[15] Xu Z Y, Yang W L and Feng M 2010 Phys. Rev. A 81 044105
[16] He Z, Zou J, Li L and Shao B 2011 Phys. Rev. A 83 012108
[17] Zheng Y P, Tang N, Wang G Y and Zeng H S 2011 Chin. Phys. B 20 110301
[18] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
[19] Breuer H P and Vacchini B 2009 Phys. Rev. E. 79 041147
[20] Haikka P and Maniscalco S 2010 Phys. Rev. A 81 052103
[21] Chang K W and Law C K 2010 Phys. Rev. A 81 052105
[22] Chruściński D, Kossakowski A and Pascazio S 2010 Phys. Rev. A 81 032101
[23] Haikka P, Cresser J D and Maniscalco S 2011 Phys. Rev. A 83 012112
[24] Ding B F, Wang X Y, Tang Y F, Mi X W and Zhao H P 2011 Chin. Phys. B 20 060304
[25] Li C F, Wang H T, Yuan H Y, Ge R C and Guo G C 2011 Chin. Phys. Lett. 28 120302
[26] Fang M F and Li Y L 2011 Chin. Phys. B 20 100312
[27] Jing J and Yu T 2010 Phys. Rev. Lett. 105 240403
[28] Wu C, Li Y, Zhu M and Guo Hong 2011 Phys. Rev. A 83 052116
[29] Xu J S, Li C F, Gong M, Zou X B, Shi C H, Chen G and Guo G C 2010 Phys. Rev. Lett. 104 100502
[30] Xu J S, Li C F, Zhang C J, Xu X Y, Zhang Y S and Guo G C 2010 Phys. Rev. A 82 042328
[31] Laine E M, Piilo J and Breuer H P 2010 Phys. Rev. A 81 062115
[32] Zeng H S, Tang N, Zheng Y P and Wang G Y 2011 Phys. Rev. A 84 032118
[33] Fang M F, Zhou P and Swain S 2000 J. Mod. Opt. 47 1043
[34] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[35] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[2] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[3] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[4] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[5] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[6] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[7] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[8] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[9] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[10] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[11] Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2019, 28(6): 060303.
[12] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[13] Dynamical control of population and entanglement for open Λ-type atoms by engineering the environment
Xiao-Lan Wang(王晓岚), Yu-Kun Ren(任玉坤), Hao-Sheng Zeng(曾浩生). Chin. Phys. B, 2019, 28(3): 030301.
[14] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[15] Non-Markovian speedup dynamics control of the damped Jaynes-Cummings model with detuning
Kai Xu(徐凯), Wei Han(韩伟), Ying-Jie Zhang(张英杰), Heng Fan(范桁). Chin. Phys. B, 2018, 27(1): 010302.
No Suggested Reading articles found!