|
|
Efficient three-step entanglement concentration for an arbitrary four-photon cluster state |
Si Bin (司斌)a, Su Shi-Lei (苏石磊)a, Sun Li-Li (孙立莉)b, Cheng Liu-Yong (程留永)b, Wang Hong-Fu (王洪福)a c, Zhang Shou (张寿)a |
a Department of Physics, College of Science, Yanbian University, Yanji 133002, China; b Center for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China; c School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract We propose an entanglement concentration protocol (ECP) to concentrate an arbitrary partially-entangled four-photon cluster state. As a pioneering three-step entanglement concentration scheme, our protocol only needs single-photon resource to assist the concentration in each step, which makes this protocol more economical. With the help of the linear optical elements and weak cross-Kerr nonlinearity, one can obtain a maximally-entangled cluster state via local operations and classical communication. Moreover, the protocol can be iterated to obtain a higher success probability and is feasible under the current experimental conditions.
|
Received: 09 April 2012
Revised: 28 September 2012
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11264042), the Talent Program of Yanbian University, China (Grant No. 950010001), the National Science Foundation for Post-doctoral Scientists of China (Grant No. 2012M520612), and the Program for Chun Miao Excellent Talents of Department of Education of Jilin Province, China (Grant No. 201316). |
Corresponding Authors:
Zhang Shou
E-mail: szhang@ybu.edu.cn
|
Cite this article:
Si Bin (司斌), Su Shi-Lei (苏石磊), Sun Li-Li (孙立莉), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿) Efficient three-step entanglement concentration for an arbitrary four-photon cluster state 2013 Chin. Phys. B 22 030305
|
[1] |
Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
|
[2] |
Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
|
[3] |
Grover L K 1997 Phys. Rev. Lett. 79 325
|
[4] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[5] |
Li X H, Duan X J, Sheng Y B, Zhou H Y and Deng F G 2009 Chin. Phys. B 18 3710
|
[6] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[7] |
Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
|
[8] |
Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
|
[9] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[10] |
Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
|
[11] |
Yan F L, Gao T and Chitambar E 2011 Phys. Rev. A 83 022319
|
[12] |
Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
|
[13] |
Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
|
[14] |
Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
|
[15] |
Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
|
[16] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
|
[17] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[18] |
Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
|
[19] |
Zhang L H, Dong P and Cao Z L 2007 Chin. Phys. 16 640
|
[20] |
Zhang L H, Yang M and Cao Z L 2007 Physica A 374 611
|
[21] |
Wang H F, Zhang S and Yeon K H 2010 Eur. Phys. J. D 56 271
|
[22] |
Sun L L, Wang H F, Zhang S and Yeon K H 2012 J. Opt. Soc. Am. B 29 630
|
[23] |
Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
|
[24] |
Dür W and Briegel H J 2004 Phys. Rev. Lett. 92 180403
|
[25] |
Walther P, Aspelmeyer M, Resch K J and Zeilinger A 2005 Phys. Rev. Lett. 95 020403
|
[26] |
Kiesel N, Schmid C, Weber U, Tóth G, Gühne O, Ursin R and Weinfurter H 2005 Phys. Rev. Lett. 95 210502
|
[27] |
Zou X B and Mathis W 2005 Phys. Rev. A 71 032308
|
[28] |
Su S L, Wang Y, Guo Q, Wang H F and Zhang S 2012 Chin. Phys. B 21 044205
|
[29] |
Zhang W, Liu Y M, Liu J and Zhang Z J 2008 Chin. Phys. B 17 3203
|
[30] |
Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phys. Lett. A 364 7
|
[31] |
Zhong L Y, Guo Q, Cheng L Y, Su S L, Zhu L, Wang H F and Zhang S 2012 Opt. Commun. 285 4616
|
[32] |
Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
|
[33] |
Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
|
[34] |
Munro M J, Nemoto K and Spiller T P 2005 New. J. Phys. 7 137
|
[35] |
Munro W J, Nemoto K, Beausoleil R G and Spiller T P 2005 Phys. Rev. A 71 033819
|
[36] |
Pittman T B, Fitch M J, Jacobs B C and Franson J D 2003 Phys. Rev. A 68 032316
|
[37] |
Zhao Z, Zhang A N, Chen Y A, Zhang H, Du J F, Yang T and Pan J W 2005 Phys. Rev. Lett. 94 030501
|
[38] |
Okamoto R, Hofmann H F, Takeuchi S and Sasaki K 2005 Phys. Rev. Lett. 95 210506
|
[39] |
Bao X H, Chen T Y, Zhang Q, Yang J, Zhang H, Yang T and Pan J W 2007 Phys. Rev. Lett. 98 170502
|
[40] |
Fiurášek J 2006 Phys. Rev. A 73 062313
|
[41] |
Lin Q and Li J 2009 Phys. Rev. A 79 022301
|
[42] |
Lin Q and He B 2009 Phys. Rev. A 80 042310
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|