Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 028101    DOI: 10.1088/1674-1056/22/2/028101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering

Wang Dang-Huia b, Xu Sheng-Ruia, Hao Yuea, Zhang Jin-Chenga, Xu Tian-Hanb, Lin Zhi-Yua, Zhou Haoa, Xue Xiao-Yonga
a State Key Laboratory of Fundamental Science on Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China;
b School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
Abstract  In this paper, Raman shifts of a-plane GaN layers grown on r-plane sapphire substrates by low-pressure metal-organic chemical vapor deposition (LPMOCVD) are investigated. We compare the crystal qualities and study the relationships between Raman shift and temperature for conventional a-plane GaN epilayer and insertion AlN/AlGaN superlattice layers for a-plane GaN epilayer using temperature-dependent Raman scattering in a temperature range from 83 K to 503 K. The temperature-dependences of GaN phonon modes (A1 (TO), E2 (high), and E1 (TO)) and the linewidths of E2 (high) phonon peak are studied. The results indicate that there exist two mechanisms between phonon peaks in the whole temperature range, and the relationship can be fitted to the pseudo-Voigt function. From analytic results we find a critical temperature existing in the relationship, which can characterize the anharmonic effects of a-plane GaN in different temperature ranges. In the range of higher temperature, the relationship exhibits an approximately linear behavior, which is consistent with the analyzed results theoretically.
Keywords:  metal-organic chemical vapor deposition      Raman shift      crystal quality      anharmonic effect  
Received:  29 April 2012      Revised:  09 August 2012      Published:  01 January 2013
PACS:  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. K50511250002); the National Key Science & Technology Special Project, China (Grant No. 2008ZX01002-002); the Major Program and State Key Program of the National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033); and the Science Fund for Youths Scholars (Grant Nos. 61204006).
Corresponding Authors:  Wang Dang-Hui     E-mail:  wdhyxp@163.com

Cite this article: 

Wang Dang-Hui, Xu Sheng-Rui, Hao Yue, Zhang Jin-Cheng, Xu Tian-Han, Lin Zhi-Yu, Zhou Hao, Xue Xiao-Yong Study on the relationships between Raman shifts and temperature range for a-plane GaN using temperature-dependent Raman scattering 2013 Chin. Phys. B 22 028101

[1] Gao H Y, Yan F W, Zhang H X, Li J M, Wang J X and Yan J C 2007 J. Appl. Phys. 101 103533
[2] Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
[3] Xu S R, Hao Y, Zhang J C, Xue X Y, Lin Z Y, Liu Z Y, Ma J C, Lü L, Li P X, He Q and Li J T 2011 Chin. Phys. B 20 107802
[4] Netzela C, Wernicke T, Zeimer U, Brunner F, Weyers M and Kneissl M 2008 J. Cryst. Growth 310 8
[5] Kazuhide K, Shizutoshi A and Kazuhiro O 2007 J. Cryst. Growth 298 293
[6] Kuroda M and Ishida H 2007 J. Appl. Phys. 102 093703
[7] Wang H M, Zhang J P, Chen C Q, Fareed Q, Yang J W and Asif K M 2002 Appl. Phys. Lett. 81 22
[8] Sun W H, Zhang J, Yang J, Maruska H P, Khan A, Liu R and Ponce F A 2005 Appl. Phys. Lett. 87 211915
[9] Einfeldt S, Heinke H, Kirchner V and Hommel D 2001 J. Appl. Phys. 89 2164
[10] Xu S R, Zhang J C, Li Z M, Zhou X W, Xu Z H, Zhao G C, Zhu Q W, Zhang J F, Mao W and Hao Y 2009 Acta Phys. Sin. 58 5705 (in Chinese)
[11] Yan F W, Gao H Y, Zhang H X, Wang G H, Yang F H, Yan J C, Wang J X, Zeng Y P and Li J M 2007 J. Appl. Phys. 101 023506
[12] Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Mao W, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth. 311 3622
[13] Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204
[14] Song D Y, Basavaraj M, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2006 J. Appl. Phys. 100 113504
[15] Song D Y, Nikishin S A, Holtz M, Soukhoveev V, Usikov A and Dmitriev V 2007 J. Appl. Phys. 101 053535
[16] Irmer G, Brumme T, Herms M, Wernicke T, Kneissl M and Weyers M 2008 J. Mater. Sci: Mater. Electron. 19 51
[17] Zhang Y C, Xing Z G, Ma Z G, Chen Y, Ding G J, Xu P Q, Dong C M, Chen H and Le X Y 2010 Sci. Chin.: Phys. Mech. Astron. 53 465
[18] Wagner J M and Bechstedt F 2000 Appl. Phys. Lett. 77 346
[19] Kaganer V M, Brandt O, Trampert A and Ploog K H 2005 Phys. Rev. B 72 045423
[20] Xue X Y, Xu S R, Zhang J C, Lin Z Y, Ma J C, Liu Z Y, Xue J S and Hao Y 2012 Chin. Phys. B 21 027803
[21] Giehler M, Ramsteiner M and Waltereit P 2001 J. Appl. Phys. 89 3634
[22] Gorczyca I, Christensen N E, Peltzery Blancá E L and Rodriguez C O 1995 Phys. Rev. B 51 11936
[1] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[2] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[3] Low temperature photoluminescence study of GaAs defect states
Jia-Yao Huang(黄佳瑶), Lin Shang(尚林), Shu-Fang Ma(马淑芳), Bin Han(韩斌), Guo-Dong Wei(尉国栋), Qing-Ming Liu(刘青明), Xiao-Dong Hao(郝晓东), Heng-Sheng Shan(单恒升), Bing-She Xu(许并社). Chin. Phys. B, 2020, 29(1): 010703.
[4] Thermophysical properties of iridium at finite temperature
Priyank Kumar, N K Bhatt, P R Vyas, V B Gohel. Chin. Phys. B, 2016, 25(11): 116401.
[5] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie, Li Ming, Zhao Qian, Gu Wen-Wen, Lau Kei-May. Chin. Phys. B, 2015, 24(8): 087305.
[6] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie, Li Ming, Lau Kei-May. Chin. Phys. B, 2015, 24(7): 078102.
[7] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming, Zhang Jie, Lin Wen-Yu, Ye Meng-Xin, Feng Xiang-Xu, Zhang Dong-Yan, Steve Ding, Xu Chen-Ke, Liu Bao-Lin. Chin. Phys. B, 2015, 24(5): 057801.
[8] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai, Liu Ren-Jun, Lü You, Yang Hao-Yu, Li Guo-Xing, Zhang Yuan-Tao, Zhang Bao-Lin. Chin. Phys. B, 2015, 24(1): 018102.
[9] Improved crystal quality of GaN film with the in-plane lattice-matched In0.17Al0.83N interlayer grown on sapphire substrate using pulsed metal–organic chemical vapor deposition
Li Liang, Yang Lin-An, Xue Jun-Shuai, Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Hao Yue. Chin. Phys. B, 2014, 23(6): 067103.
[10] Improvement in a-plane GaN crystalline quality using wet etching method
Cao Rong-Tao, Xu Sheng-Rui, Zhang Jin-Cheng, Zhao Yi, Xue Jun-Shuai, Ha Wei, Zhang Shuai, Cui Pei-Shui, Wen Hui-Juan, Chen Xing. Chin. Phys. B, 2014, 23(4): 047804.
[11] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying, Xu Zhang-Cheng, Cui Ming-Qi, Xie Yu-Xin, Zhang Guo-Yi. Chin. Phys. B, 2014, 23(10): 107803.
[12] Enhanced performance of InGaN/GaN multiple quantum well solar cells with double indium content
Zhao Bi-Jun, Chen Xin, Ren Zhi-Wei, Tong Jin-Hui, Wang Xing-Fu, Li Dan-Wei, Zhuo Xiang-Jing, Zhang Jun, Yi Han-Xiang, Li Shu-Ti. Chin. Phys. B, 2013, 22(8): 088401.
[13] Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
Lü Xiao-Long, Zhang Xia, Liu Xiao-Long, Yan Xin, Cui Jian-Gong, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Chin. Phys. B, 2013, 22(6): 066101.
[14] Equation of state for solids with considering cohesive energy and anharmonic effect and its application to MgO
Zhang Da, Sun Jiu-Xun. Chin. Phys. B, 2012, 21(8): 080508.
[15] Growth and properties of wide spectral white light emitting diodes
Xie Zi-Li, Zhang Rong, Fu De-Yi, Liu Bin, Xiu Xiang-Qian, Hua Xue-Mei, Zhao Hong, Chen Peng, Han Ping, Shi Yi, Zheng You-Dou. Chin. Phys. B, 2011, 20(11): 116801.
No Suggested Reading articles found!