CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Improvement in a-plane GaN crystalline quality using wet etching method |
Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴) |
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract Nonpolar (112 0) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of the samples grown on etched substrates compared with those of the sample without etching, both on-axis and off-axis, indicating the reduced dislocation densities and improved crystalline quality of these samples. The spatial mapping of the E2 (high) phonon mode demonstrates the smaller line width with a black background in the wing region, which testifies the reduced dislocation densities and enhanced crystalline quality of the epitaxial lateral overgrowth areas. Raman scattering spectra of the E2 (high) peaks exhibit in-plane compressive stress for all the overgrowth samples, and the E2 (high) peaks of samples grown on etched substrates shift toward the lower frequency range, indicating the relaxations of in-plane stress in these GaN films. Furthermore, room temperature photoluminescence measurement demonstrates a significant decrease in the yellow-band emission intensity of a-plane GaN grown on etched templates, which also illustrates the better optical properties of these samples.
|
Received: 04 May 2013
Revised: 22 August 2013
Accepted manuscript online:
|
PACS:
|
78.55.Cr
|
(III-V semiconductors)
|
|
81.15.Kk
|
(Vapor phase epitaxy; growth from vapor phase)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61204006), the Fundamental Research Funds for the Central Universities, China (Grant No. K50511250002), and the National Key Science & Technology SpecialProject, China (Grant No. 2008ZX01002-002). |
Corresponding Authors:
Zhang Jin-Cheng
E-mail: jchzhang@xidian.edu.cn
|
About author: 78.55.Cr; 81.15.Kk |
Cite this article:
Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴) Improvement in a-plane GaN crystalline quality using wet etching method 2014 Chin. Phys. B 23 047804
|
[1] |
Xu S R, Hao Y, Zhang J C, Xue X Y, Li P X, Li J T, Lin Z Y, Liu Z Y, Ma J C, He Q and Lü L 2011 Chin. Phys. B 20 107802
|
[2] |
Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
|
[3] |
Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
|
[4] |
Cho Y S, Sun Q, Lee I H, Ko T S, Yerino C D, Han J, Kong B H, Cho H K and Wang S 2008 Appl. Phys. Lett. 93 111904
|
[5] |
Waltereit P, Brandt O, Trampert A, Grahn H T, Yang J W and Khan M A 2000 Nature 406 865
|
[6] |
Liu R, Bell A, Ponce F A, Chen C Q, Yang J W and Khan M A 2005 Appl. Phys. Lett. 86 021908
|
[7] |
Wu Z H, Fischer A M, Ponce F A, Bastek B, Christen J, Wernicke T, Weyers M and Kneissl M 2008 Appl. Phys. Lett. 92 171904
|
[8] |
Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 1201
|
[9] |
Haskell B A, Wu F, Craven M D, Matsuda S and Fini P T 2003 Appl. Phys. Lett. 83 644
|
[10] |
Johnston C F, Kappers M J, Moram M A, Hollander J L and Humphreys C L 2009 J. Cryst. Growth 311 3295
|
[11] |
Hollander J L, Kappers M J, McAleese C and Humphreys C 2008 Appl. Phys. Lett. 92 101104
|
[12] |
Xu S R, Zhang J C, Yang L A, Zhou X W, Cao Y R, Zhang J F, Xue J S, Liu Z Y, Ma J C, Bao F and Hao Y 2011 J. Cryst. Growth 327 94
|
[13] |
Stocker D A, Schubert E F and Redwing J M 1998 Appl. Phys. Lett. 73 2654
|
[14] |
Na S I, Ha G Y, Han D S, Kim S S, Kim J Y, Lim J H, Kim D J, Min K I and Park S J 2006 IEEE. Photon. Technol. Lett. 18 14
|
[15] |
Youtsey C, Adesida I, Romano L T and Bulman G 1998 Appl. Phys. Lett. 72 560
|
[16] |
Youtsey C, Romano L T and Adesida I 1998 Appl. Phys. Lett. 73 797
|
[17] |
Rouviere J L, Weyher J L, Seelmann-Eggbert M and Porowski S 1998 Appl. Phys. Lett. 73 668
|
[18] |
M. Sano and M. Aoki 1976 Jpn. J. Appl. Phys. 15 1943
|
[19] |
T. Sasaki and S. Zembutsu 1987 J. Appl. Phys. 61 2533
|
[20] |
Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth 311 3622
|
[21] |
Mukai T, Takekawa K and Nakamura S 1998 Jpn. J. Appl. Phys., Part 2 37 L839
|
[22] |
Chakraborty A, Kim K C, Wu F, Speck J S, Denbaars S P and Mishr U K 2006 Appl. Phys. Lett. 89 041903
|
[23] |
Yan F W, Gao H Y, Zhang H X, Wang G H, Zeng Y P, Yan J C, Wang J X, Zeng Y P and Li J M 2007 J. Appl. Phys. 101 023506
|
[24] |
Mickevi'eius J, Aleksiejunas R, Shur M S, Sakalauskas S, Tamulaitis G, Fareed Q and Gaska R 2005 Appl. Phys. Lett. 86 041910
|
[25] |
Neugebauera J and Walle C V 1996 Appl. Phys. Lett. 69 503
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|