Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 047804    DOI: 10.1088/1674-1056/23/4/047804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Improvement in a-plane GaN crystalline quality using wet etching method

Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Nonpolar (112 0) GaN films are grown on the etched a-plane GaN substrates via metalorganic vapor phase epitaxy. High-resolution X-ray diffraction analysis shows great decreases in the full width at half maximum of the samples grown on etched substrates compared with those of the sample without etching, both on-axis and off-axis, indicating the reduced dislocation densities and improved crystalline quality of these samples. The spatial mapping of the E2 (high) phonon mode demonstrates the smaller line width with a black background in the wing region, which testifies the reduced dislocation densities and enhanced crystalline quality of the epitaxial lateral overgrowth areas. Raman scattering spectra of the E2 (high) peaks exhibit in-plane compressive stress for all the overgrowth samples, and the E2 (high) peaks of samples grown on etched substrates shift toward the lower frequency range, indicating the relaxations of in-plane stress in these GaN films. Furthermore, room temperature photoluminescence measurement demonstrates a significant decrease in the yellow-band emission intensity of a-plane GaN grown on etched templates, which also illustrates the better optical properties of these samples.
Keywords:  nonpolar GaN      wet etching      metal-organic chemical vapor deposition      crystalline quality  
Received:  04 May 2013      Revised:  22 August 2013      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61204006), the Fundamental Research Funds for the Central Universities, China (Grant No. K50511250002), and the National Key Science & Technology SpecialProject, China (Grant No. 2008ZX01002-002).
Corresponding Authors:  Zhang Jin-Cheng     E-mail:  jchzhang@xidian.edu.cn
About author:  78.55.Cr; 81.15.Kk

Cite this article: 

Cao Rong-Tao (曹荣涛), Xu Sheng-Rui (许晟瑞), Zhang Jin-Cheng (张进成), Zhao Yi (赵一), Xue Jun-Shuai (薛军帅), Ha Wei (哈微), Zhang Shuai (张帅), Cui Pei-Shui (崔培水), Wen Hui-Juan (温慧娟), Chen Xing (陈兴) Improvement in a-plane GaN crystalline quality using wet etching method 2014 Chin. Phys. B 23 047804

[1] Xu S R, Hao Y, Zhang J C, Xue X Y, Li P X, Li J T, Lin Z Y, Liu Z Y, Ma J C, He Q and Lü L 2011 Chin. Phys. B 20 107802
[2] Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
[3] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
[4] Cho Y S, Sun Q, Lee I H, Ko T S, Yerino C D, Han J, Kong B H, Cho H K and Wang S 2008 Appl. Phys. Lett. 93 111904
[5] Waltereit P, Brandt O, Trampert A, Grahn H T, Yang J W and Khan M A 2000 Nature 406 865
[6] Liu R, Bell A, Ponce F A, Chen C Q, Yang J W and Khan M A 2005 Appl. Phys. Lett. 86 021908
[7] Wu Z H, Fischer A M, Ponce F A, Bastek B, Christen J, Wernicke T, Weyers M and Kneissl M 2008 Appl. Phys. Lett. 92 171904
[8] Craven M D, Lim S H, Wu F, Speck J S and DenBaars S P 2002 Appl. Phys. Lett. 81 1201
[9] Haskell B A, Wu F, Craven M D, Matsuda S and Fini P T 2003 Appl. Phys. Lett. 83 644
[10] Johnston C F, Kappers M J, Moram M A, Hollander J L and Humphreys C L 2009 J. Cryst. Growth 311 3295
[11] Hollander J L, Kappers M J, McAleese C and Humphreys C 2008 Appl. Phys. Lett. 92 101104
[12] Xu S R, Zhang J C, Yang L A, Zhou X W, Cao Y R, Zhang J F, Xue J S, Liu Z Y, Ma J C, Bao F and Hao Y 2011 J. Cryst. Growth 327 94
[13] Stocker D A, Schubert E F and Redwing J M 1998 Appl. Phys. Lett. 73 2654
[14] Na S I, Ha G Y, Han D S, Kim S S, Kim J Y, Lim J H, Kim D J, Min K I and Park S J 2006 IEEE. Photon. Technol. Lett. 18 14
[15] Youtsey C, Adesida I, Romano L T and Bulman G 1998 Appl. Phys. Lett. 72 560
[16] Youtsey C, Romano L T and Adesida I 1998 Appl. Phys. Lett. 73 797
[17] Rouviere J L, Weyher J L, Seelmann-Eggbert M and Porowski S 1998 Appl. Phys. Lett. 73 668
[18] M. Sano and M. Aoki 1976 Jpn. J. Appl. Phys. 15 1943
[19] T. Sasaki and S. Zembutsu 1987 J. Appl. Phys. 61 2533
[20] Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth 311 3622
[21] Mukai T, Takekawa K and Nakamura S 1998 Jpn. J. Appl. Phys., Part 2 37 L839
[22] Chakraborty A, Kim K C, Wu F, Speck J S, Denbaars S P and Mishr U K 2006 Appl. Phys. Lett. 89 041903
[23] Yan F W, Gao H Y, Zhang H X, Wang G H, Zeng Y P, Yan J C, Wang J X, Zeng Y P and Li J M 2007 J. Appl. Phys. 101 023506
[24] Mickevi'eius J, Aleksiejunas R, Shur M S, Sakalauskas S, Tamulaitis G, Fareed Q and Gaska R 2005 Appl. Phys. Lett. 86 041910
[25] Neugebauera J and Walle C V 1996 Appl. Phys. Lett. 69 503
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[3] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[4] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[5] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[6] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[7] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[8] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[9] Silica-based microcavity fabricated by wet etching
H Long(龙浩), W Yang(杨文), L Y Ying(应磊莹), B P Zhang(张保平). Chin. Phys. B, 2017, 26(5): 054211.
[10] Self-aligned-gate AlGaN/GaN heterostructure field-effect transistor with titanium nitride gate
Jia-Qi Zhang(张家琦), Lei Wang(王磊), Liu-An Li(李柳暗), Qing-Peng Wang(王青鹏), Ying Jiang(江滢), Hui-Chao Zhu(朱慧超), Jin-Ping Ao(敖金平). Chin. Phys. B, 2016, 25(8): 087308.
[11] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
[12] Normally-off metamorphic AlInAs/AlInAs HEMTs on Si substrates grown by MOCVD
Huang Jie (黄杰), Li Ming (黎明), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(7): 078102.
[13] Effect of pressure on the semipolar GaN (10-11) growth mode on patterned Si substrates
Liu Jian-Ming (刘建明), Zhang Jie (张洁), Lin Wen-Yu (林文禹), Ye Meng-Xin (叶孟欣), Feng Xiang-Xu (冯向旭), Zhang Dong-Yan (张东炎), Steve Ding, Xu Chen-Ke (徐宸科), Liu Bao-Lin (刘宝林). Chin. Phys. B, 2015, 24(5): 057801.
[14] High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition
Wang Lian-Kai (王连锴), Liu Ren-Jun (刘仁俊), Lü You (吕游), Yang Hao-Yu (杨皓宇), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2015, 24(1): 018102.
[15] Mid-gap photoluminescence and magnetic properties of GaMnN films grown by metal-organic chemical vapor deposition
Xing Hai-Ying (邢海英), Xu Zhang-Cheng (徐章程), Cui Ming-Qi (崔明启), Xie Yu-Xin (谢玉芯), Zhang Guo-Yi (张国义). Chin. Phys. B, 2014, 23(10): 107803.
No Suggested Reading articles found!