Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 127501    DOI: 10.1088/1674-1056/22/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics

Meng Qing-Kuan, Feng Dong-Tai, Gao Xu-Tuan, Mei Yu-Xue
School of Science, Shandong University of Technology, Zibo 255049, China
Abstract  At zero temperature, based on the Ising model, the phase transition in a two-dimensional square lattice is studied using the generalized zero-temperature Glauber dynamics. Using Monte Carlo (MC) renormalization group methods, the static critical exponents and the dynamic exponent are studied; the type of phase transition is found to be of the first order.
Keywords:  zero-temperature Glauber dynamics      phase transition      Monte Carlo renormalization group  
Received:  18 March 2013      Revised:  28 April 2013      Published:  25 October 2013
PACS:  75.10.Hk (Classical spin models)  
  75.40.Mg (Numerical simulation studies)  
  05.10.Cc (Renormalization group methods)  
  64.60.Ht (Dynamic critical phenomena)  
Corresponding Authors:  Meng Qing-Kuan     E-mail:  qkmeng@mail.bnu.edu.cn

Cite this article: 

Meng Qing-Kuan, Feng Dong-Tai, Gao Xu-Tuan, Mei Yu-Xue Phase transition in a two-dimensional Ising ferromagnet based on the generalized zero-temperature Glauber dynamics 2013 Chin. Phys. B 22 127501

[1] Weerasinghe G L, Needs R J and Pickard C J 2011 Phys. Rev. B 84 174110
[2] Casadei M, Ren X G, Rinke P, Rubio A and Scheffler M 2012 Phys. Rev. Lett. 109 146402
[3] Fratini E and Pieri P 2012 Phys. Rev. A 85 063618
[4] Osychenko O N, Astrakharchik G E, Mazzanti F and Boronat J 2012 Phys. Rev. A 85 063604
[5] Kalis H, Klagges D, Orús R and Schmidt K P 2012 Phys. Rev. A 86 022317
[6] Shopova D V and Uzunov D I 2003 Phys. Rep. 379 1
[7] Glauber R J 1963 J. Math. Phys. 4 294
[8] Liggett T M 1985 Interacting Particle Systems (New York: Springer-Verlag)
[9] Spirin V, Krapivsky P L and Redner S 2001 Phys. Rev. E 65 016119
[10] Barros K, Krapivsky P L and Redner S 2009 Phys. Rev. E 80 040101(R)
[11] Olejarz J, Krapivsky P L and Redner S 2011 Phys. Rev. E 83 051104
[12] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[13] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[14] Herrero C P 2009 J. Phys. A: Math. Theor. 42 415102
[15] Castellano C, Loreto V, Barrat A, Cecconi F and Parisi D 2005 Phys. Rev. E 71 066107
[16] Sznajd-Weron K 2010 Phys. Rev. E 82 031120
[17] Yi I G and Kim B J 2011 Phys. Rev. E 83 033101
[18] Godréche C and Luck J M 2005 J. Phys.: Condens. Matter 17 S2573
[19] Miyasaka H, Julve M, Yamashita M and Clérac R 2009 Inorg. Chem. 48 3420
[20] Swendsen R H 1979 Phys. Rev. Lett. 42 859
[21] For a review, see Niemeijer T and Van Leeuwen J M J 1976 in Phase Transitions and Critical Phenomena, ed. Bomb C and Green M S (New York: Academic), Vol. 6
[22] Tobochnik J, Sarker S and Cordery R 1981 Phys. Rev. Lett. 46 1417
[23] Katz S L, Gunton J D and Liu C P 1982 Phys. Rev. B 25 6008
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[12] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[13] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[14] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[15] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
No Suggested Reading articles found!