Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 127401    DOI: 10.1088/1674-1056/22/12/127401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Switching effects in superconductor/ferromagnet/superconductor graphene junctions

Li Xiao-Wei (李晓薇)a b, Liu Dan (刘丹)a c, Bao Yan-Hui (鲍艳辉)a c
a School of Physics and Electronic Electrical Engineering and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China;
b State Key Laboratory of Functional Materials for Informatics, (Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences), Shanghai 200050, China;
c School of Physics, Northeast Normal University, Changchun 130024, China
Abstract  The Josephson effect in the superconductor/ferromagnet/superconductor (SFS) graphene Josephson junction is studied using the Dirac Bogoliubov-de Gennes (DBdG) formalism. It is shown that the SFS graphene junction drives 0–π transition with the increasing of p=h0L/vFħ, which captures the effects of both the exchange field and the length of the junction; the spin-down current is dominant. The 0 state is stable for p < pc (critical value pc ≈ 0.80) and the π state is stable for p > pc, where the free energy minima are at φg=0 and φg=π, respectively. The coexistence of the 0 and π states appears in the vicinity of pc.
Keywords:  superconductor junction      grapheme      switching effect  
Received:  01 May 2013      Revised:  16 August 2013      Accepted manuscript online: 
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  74.70.Wz (Carbon-based superconductors)  
  74.81.Fa (Josephson junction arrays and wire networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074088).
Corresponding Authors:  Li Xiao-Wei     E-mail:  lxw@hytc.edu.cn

Cite this article: 

Li Xiao-Wei (李晓薇), Liu Dan (刘丹), Bao Yan-Hui (鲍艳辉) Switching effects in superconductor/ferromagnet/superconductor graphene junctions 2013 Chin. Phys. B 22 127401

[1] Buzdin A I 2005 Rev. Mod. Phys. 77 935
[2] Bulaevskii L N, Kuzii V V and Sobyanin A A 1977 JETP Lett. 25 290
[3] Buzdin A I, Bulaevskii L N and Panyukov V 1982 JETP Lett. 35 178
[4] Radovic Z, Lazarides N and Flytzanis N 2003 Phys. Rev. B 68 014501
[5] Demler E A, Arnold G B and Beasley M R 1997 Phys. Rev. B 55 15174
[6] Xu M J and Dou X M 2010 Chin. Phys. B 19 067301
[7] Yu H L, Wang Z G and Pong J 2008 Chin. Phys. B 17 4627
[8] Li X W 2007 Chin. Phys. 16 3514
[9] Ryazanov V V, Oboznov V A, Rusanov A Yu, Veretennikov A V, Golubov A A and Aarts J 2001 Phys. Rev. Lett. 86 2427
[10] Kontos T, Aprili M, Lesueur J, Genêt F, Stephanidis B and Boursier R 2002 Phys. Rev. Lett. 89 137007
[11] Frolov S M, Van H D J, Oboznov V A, Bolginov V V and Ryazanov V V 2004 Phys. Rev. B 70 144505
[12] Bauer A, Bentner J, Aprili M, Della R M L, Reinwald M, Wegscheider W and Strunk C 2004 Phys. Rev. Lett. 92 217001
[13] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
[14] Du X, Skachko I and Andrei E Y 2008 Phys. Rev. B 77 184507
[15] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[16] Linder J, Yokoyama T, Huertas-Hernando D and Sudbo A 2008 Phys. Rev. Lett. 100 187004
[17] Zhang Q, Fu D, Wang B, Zhang R and Xing D Y 2008 Phys. Rev. Lett. 101 047005
[18] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[19] Kan E J, Li Z, Yang J and Hou J G 2007 Appl. Phys. Lett. 91 243116
[20] Tian H Y and Wang J 2012 Chin. Phys. B 21 017203
[21] Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S and Geim A K 2011 Science 332 328
[22] Moghaddam A G and Zareyan M 2008 Phys. Rev. B 78 115413
[23] Soodchomshom B, Tang I M and Hoonsawat R 2008 Physica C 468 2361
[24] Liang Q F, Yu Y, Wang Q H and Dong J M 2008 Phys. Rev. Lett. 101 187002
[25] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[26] Annunziata G, Enoksen H, Linder J, Cuoco M, Noce C and Sudbo A 2011 Phys. Rev. B 83 144520
[1] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[2] Structural, electronic, and magnetic behaviors of 5d transition metal atom substituted divacancy graphene: A first-principles study
Rafique Muhammad, Yong Shuai(帅永), He-Ping Tan, Hassan Muhammad. Chin. Phys. B, 2017, 26(5): 056301.
[3] The inelastic electron tunneling spectroscopy of edge-modified graphene nanoribbon-based molecular devices
Zong-Ling Ding(丁宗玲), Zhao-Qi Sun(孙兆奇), Jin Sun(孙进), Guang Li(李广), Fan-Ming Meng(孟凡明), Ming-Zai Wu(吴明在), Yong-Qing Ma(马永青), Long-Jiu Cheng(程龙玖), Xiao-Shuang Chen(陈效双). Chin. Phys. B, 2017, 26(2): 023103.
[4] Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling
Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2016, 25(2): 027201.
[5] Effect of 6H-SiC (1120) substrate on epitaxial graphene revealed by Raman scattering
Lin Jing-Jing (林菁菁), Guo Li-Wei (郭丽伟), Jia Yu-Ping (贾玉萍), Chen Lian-Lian (陈莲莲), Lu Wei (芦伟), Huang Jiao (黄郊), Chen Xiao-Long (陈小龙). Chin. Phys. B, 2013, 22(1): 016301.
[6] Low platinum loading PtNPs/graphene composite catalyst with high electrocatalytic activity for dye-sensitized solar cells
Li Ping-Jian (李萍剑), Chen Kai (程凯), Chen Yuan-Fu (陈远富), Wang Ze-Gao (王泽高), Hao Xin (郝昕), Liu Jing-Bo (刘竞博), He Jia-Rui (贺加瑞), Zhang Wan-Li (张万里 ). Chin. Phys. B, 2012, 21(11): 118101.
[7] Spin-polarized transport in a normal/ferromagnetic/normal zigzag graphene nanoribbon junction
Tian Hong-Yu(田宏玉) and Wang Jun(汪军) . Chin. Phys. B, 2012, 21(1): 017203.
[8] Tunnelling cooling by a normal--vacuum--superconductor junction
Zhang Xin(张鑫) and Zhang Dian-Lin(张殿琳). Chin. Phys. B, 2007, 16(9): 2656-2660.
No Suggested Reading articles found!