Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124203    DOI: 10.1088/1674-1056/22/12/124203
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Control of gain and thermal carrier loss profiles for mode optimization in 980-nm broad-area vertical-cavity surface-emitting lasers

Wu Jian (吴坚), Cui Huai-Yang (崔怀洋), Huang Meng (黄梦), Ma Ming-Lei (马明磊)
Department of Applied Physics, Beihang University, Beijing 100191, China
Abstract  Optical gain and thermal carrier loss distributions regarding current diffusion and various electric contact areas are investigated to improve the near-field modes from the ring-shape to a Gaussian-like configuration for extra-broad-area and oxide-confined vertical-cavity surface-emitting lasers. In this work an equivalent circuit network model is used. The resistance of the continuously-graded distributed Bragg reflectors (DBRs), the current diffusion and the temperature effect due to different electric-contact areas are calculated and analyzed at first, as these parameters affect one another and are the key factors in determining the gain and thermal carrier loss. Finally, the gain and thermal carrier loss distributions are calculated and discussed.
Keywords:  optical gain      carrier loss      thermal effect      vertical-cavity-surface-emitting laser  
Received:  29 January 2013      Revised:  13 March 2013      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Cg (Contact resistance, contact potential)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974012).
Corresponding Authors:  Wu Jian     E-mail:  jwu2@buaa.edu.cn

Cite this article: 

Wu Jian (吴坚), Cui Huai-Yang (崔怀洋), Huang Meng (黄梦), Ma Ming-Lei (马明磊) Control of gain and thermal carrier loss profiles for mode optimization in 980-nm broad-area vertical-cavity surface-emitting lasers 2013 Chin. Phys. B 22 124203

[1] Samal N, Johnson S R, Ding D, Samal A K, Yu S Q and Zhang Y H 2005 Appl. Phys. Lett. 87 161108
[2] Nakwaski W and Sarzala R P 2011 Opt. Applicata 41 7
[3] Zhao Y G and McInemey J G 1996 IEEE J. Quantum Electron. 32 1950
[4] Chuang H H, Biard J R, Guenter J G, Gary R J and Butler J K 2007 IEEE J. Quantum Electron. 43 1028
[5] Streiff M, Witzig A, Pfeiffer M, Royo P and Fichtner W 2003 IEEE J. Sel. Top. Quantum Electron. 9 879
[6] Osinski M, Smagley V A, Liu M, Smolyakov G A, Eliseev P G, Shen B P and Simonis G J 2003 IEEE J. Sel. Top. Quantum Electron. 9 1422
[7] Michalzik R and Ebeling K J 1993 IEEE J. Quantum Electron. 29 1963
[8] Zhang H B, Mrozynski G, Wallrabenstein A and Schrage J 2004 IEEE J. Quantum Electron. 40 18
[9] Morozov V N, Neff J A and Zhou H J 1997 IEEE J. Quantum Electron. 33 980
[10] Liu Y, Ng W C, Klein B and Hess K 2003 IEEE J. Quantum Electron. 39 99
[11] Yu S F 2003 IEEE J Quantum Electron. 39 1362
[12] Valle A 1998 IEEE J. Quantum Electron. 34 1942
[13] Liu H Q, Zhang J, Cui D F, Xu Z Y, Ning Y Q, Yan C L, Qin L, Liu Y, Wang L J and Cao J L 2004 Acta Phys. Sin. 53 2986 (in Chinese)
[14] He G R, Shen W J, Wang Q, Zheng W H and Chen L H 2010 Infr. Laser Eng. 139 57
[15] Dutta N K 1990 J. Appl. Phys. 68 1961
[16] Pinches M S, Frost J E F, Martin P M, Sale T E, Robson P N and Woodhead J 2000 IEE Proc. Optoelectron. 147 11
[17] Iga K, Koyama F and Kinoshita S 1988 IEEE J. Quantum Electron. 24 1845
[18] Huang M, Wu J, Cui H Y, Qian J Q and Ning Y Q 2012 Chin. Phys. B 21 104207
[19] Kumar R C 1968 Solid State Electronics 11 543
[20] Wu J 2006 Acta Phys. Sin. 55 5848 (in Chinese)
[21] Coldren L A and Corzine S W 1995 Diode Lasers and Photonic Integrated Circuits (New York: John Wiley & Sons, Inc)
[1] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[2] Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣). Chin. Phys. B, 2021, 30(7): 077301.
[3] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[4] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[5] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[6] Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064μm
Si-Hang Wei(魏思航), Ben Ma(马奔), Ze-Sheng Chen(陈泽升), Yong-Ping Liao(廖永平), Hong-Yue Hao(郝宏玥), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2017, 26(7): 074208.
[7] Design and performance of a composite Tm: YAG laser pumped by VBG-stabilized narrow-band laser diode
Shu-Tao Dai(戴殊韬), Jian-Hong Huang(黄见洪), Hai-Zhou Huang(黄海舟), Li-Xia Wu(吴丽霞), Jin-Hui Li(李锦辉), Jing Deng(邓晶), Yan Ge(葛燕), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2017, 26(7): 074211.
[8] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[9] Thermal effect on endurance performance of 3-dimensional RRAM crossbar array
Nianduan Lu(卢年端), Pengxiao Sun(孙鹏霄), Ling Li(李泠), Qi Liu(刘琦), Shibing Long(龙世兵), Hangbing Lv(吕杭炳), Ming Liu(刘明). Chin. Phys. B, 2016, 25(5): 056501.
[10] Temperature dependent direct-bandgap light emission and optical gain of Ge
Zhi Liu(刘智), Chao He(何超), Dongliang Zhang(张东亮), Chuanbo Li(李传波), Chunlai Xue(薛春来), Yuhua Zuo(左玉华), Buwen Cheng(成步文). Chin. Phys. B, 2016, 25(5): 057804.
[11] Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser
Song Yan-Rong (宋晏蓉), Guoyu He-Yang (郭于鹤洋), Zhang Peng (张鹏), Tian Jin-Rong (田金荣). Chin. Phys. B, 2015, 24(8): 084208.
[12] Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile
M H Moghtader Dindarlu, M Kavosh Tehrani, H Saghafifar, A Maleki. Chin. Phys. B, 2015, 24(12): 124205.
[13] Thermal effect of Ge2Sb2Te5 in phase change memory device
Li Jun-Tao (李俊焘), Liu Bo (刘波), Song Zhi-Tang (宋志棠), Ren Kun (任堃), Zhu Min (朱敏), Xu Jia (徐佳), Ren Jia-Dong (任佳栋), Feng Gao-Ming (冯高明), Ren Wan-Chun (任万春), Tong Hao (童浩). Chin. Phys. B, 2014, 23(8): 087804.
[14] Preparation of gold tetrananocages and their photothermal effect
Yin Nai-Qiang (尹乃强), Liu Ling (刘玲), Lei Jie-Mei (雷洁梅), Jiang Tong-Tong (蒋童童), Zhu Li-Xin (朱立新), Xu Xiao-Liang (许小亮). Chin. Phys. B, 2013, 22(9): 097502.
[15] Suppressing the preferential σ-polarization oscillation in a high power Nd:YVO4 laser with wedge laser crystal
Zheng Yao-Hui (郑耀辉), Zhou Hai-Jun (周海军), Wang Ya-Jun (王雅君), Wu Zhi-Qiang (邬志强). Chin. Phys. B, 2013, 22(8): 084207.
No Suggested Reading articles found!