ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser |
Song Yan-Rong (宋晏蓉)a, Guoyu He-Yang (郭于鹤洋)a, Zhang Peng (张鹏)b, Tian Jin-Rong (田金荣)a |
a College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; b College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China |
|
|
Abstract We present a compact passively mode-locked semiconductor disk laser at 1045 nm. The gain chip without any post processing consists of 16 compressively strained InGaAs symmetrical step quantum wells in the active region. 3-GHz repetition rate, 4.9-ps pulse duration, and 30-mW average output power are obtained with 1.4 W of 808-nm incident pump power. The temperature stability of the laser is demonstrated to have an ideal shift rate of 0.035 nm/K of the lasing wavelength.
|
Received: 07 January 2015
Revised: 29 January 2015
Accepted manuscript online:
|
PACS:
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61177047) and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010). |
Corresponding Authors:
Song Yan-Rong
E-mail: yrsong@bjut.edu.cn
|
Cite this article:
Song Yan-Rong (宋晏蓉), Guoyu He-Yang (郭于鹤洋), Zhang Peng (张鹏), Tian Jin-Rong (田金荣) Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser 2015 Chin. Phys. B 24 084208
|
[1] |
Miller D A B 2000 IEEE J. Sel. Top. Quant. 6 1312
|
[2] |
Lecomte S, Paschotta R, Pawlik S, Schimidt B, Furusawa K, Malinowski A, Richardson D J and Keller U 2005 Opt. Lett. 30 290
|
[3] |
Weingarten K J, Rodwell M J W and Bloom D M 1988 IEEE J. Quantum Electron. 24 198
|
[4] |
Bartels A, Dekorsy T and Kurz H 1999 Opt. Lett. 24 996
|
[5] |
Ramaswami R and Sivarajan K 1998 Optical Networks: A Practical Perspective (San Mateo CA: Morgan Kaufmann Publishers)
|
[6] |
Hoffmann M, Sieber O D, Maas D J H C, Wittwer V J, Golling M, Südmeyer T and Keller U 2010 Opt. Express 18 10143
|
[7] |
Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E and Keller U 2005 Appl. Phys. Lett. 86 131102
|
[8] |
Zhao Z, Bouchoule S, Song J Y, Galopin E, Harmand J C, Decobert J, Aubinand G and Oudar J L 2011 Opt. Lett. 36 4377
|
[9] |
Wilcox K G, Quarterman A H, Apostolopoulos V, Beere H E, Farrer I, Ritchieand D A and Tropper A C 2012 Opt. Express 20 7040
|
[10] |
Dupriez P, Finot C, Malinowski A, Sahu J K, Nilsson J, Richardson D J, Wilcox K G, Foreman H D and Tropper A C 2006 Opt. Express 14 9611
|
[11] |
Mihoubi Z, Wilcox K G, Elsmere S, Quarterman A, Rungsawang R, Farrer I, Beere H E, Ritchie D A, Tropper A C and Apostolopoulos V 2008 Opt. Lett. 33 2125
|
[12] |
Sieber O D, Wittwer V J, Mangold M, Hoffmann M, Golling M, Südmeyerand T and Keller U 2011 Opt. Express 19 23538
|
[13] |
Goldberg L, Mehuys D and Welch D 1994 IEEE Photon. Technol. Lett. 6 1070
|
[14] |
Mar A, Helkey R, Bowers J, Mehuys D and Welch D 1994 IEEE Photon. Technol. Lett. 6 1067
|
[15] |
Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T and Keller U 2008 Opt. Lett. 33 2719
|
[16] |
Laurain A, Myara M, Beaudoin G, Sagnesand I and Garnache A 2010 Opt. Express 18 14627
|
[17] |
Honninger C, Paschotta R, Morier-Genoud F, Moser M and Keller U 1999 J. Opt. Soc. Am. B 16 46
|
[18] |
Hastie J E, Morton L G, Calvez S, Dawson M D, Leinonen T, Pessa M, Gibson G and Padgett M J 2005 Opt. Express 13 7209
|
[19] |
Rahim M, Khiar A, Felder F, Fill M and Zogg H 2009 Appl. Phys. Lett. 94 201112
|
[20] |
Bellancourt A R, Maas D J H C, Rudin B, Golling M, Sudmeyer T and Keller U 2009 IET Optoelectron. 3 61
|
[21] |
Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A and Tropper A C 2009 Nat. Photon. 3 729
|
[22] |
Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D and Keller U 2006 IEEE J. Quantum Electron. 42 838
|
[23] |
Scheller M, Wang T L, Kunert B, Stolz W, Kochand S W and Moloney J V 2012 Electron. Lett. 48 588
|
[24] |
Sieber O D, Wittwer V J, Hoffmann M, Krestnikov I L, Mikhrin S S, Livshits D A, Golling M, Südmeyer T and Keller U 2012 Proc. SPIE, January 23–24, 2012, San Francisco, CA, USA 824210
|
[25] |
Zaugg C A, Klenner A, Sieber O D, Golling M, Tilma B W and Keller U 2013 CLEO, June 9–14, 2013, San Jose, CA, USA 2
|
[26] |
Bek R, Kersteen G, Kahle H, Schwarzback T, Jeter M and Michler P 2014 Appl. Phys. Lett. 105 082107
|
[27] |
Tropper A C, Foreman H D, Garnache A, Wilcox K G and Hoogland S H 2004 J. Phys. D: Appl. Phys. 37 75
|
[28] |
Cui Y D and Liu X M 2013 Opt. Express 21 18969
|
[29] |
Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
|
[30] |
Zaugg C A, Sun Z, Wittwer V J, Popa D, Milana S, Kulmala T S, Sundaram R S, Mangold M, Sieber O D, Golling M, Lee Y, Ahn J H, Ferrari A C and Keller U 2013 Opt. Express 21 31548
|
[31] |
Seger K, Meiser N, Choi S Y, Jung B H, Yeom D I, Rotermund F, Okhotnikov O, Laurell F and Pasiskevicius V 2013 Opt. Express 21 17806
|
[32] |
Yu Z H, Tian J R and Song Y R 2014 Chin. Phys. B 23 094206
|
[33] |
Corzine S W, Geels R S, Scott J W, Yan R H and Coldren L A 1989 IEEE J. Quantum Electron. 25 1513
|
[34] |
Yoo J, Kim K, Lee S, Lim S, Kim G, Kim J, Cho S, Lee J, Kim T and Park Y 2006 Appl. Phys. Lett. 89 131125
|
[35] |
Zhang P, Song Y R, Zhang X P, Tian J R and Zhang Z G 2010 Chin. Opt. Lett. 8 401
|
[36] |
Paschotta R, Haring R, Garnache A, Hoogland S, Tropper A C and Keller U 2002 Appl. Phys. B-Lasers Opt. 75 445
|
[37] |
Hader J, Moloney J V and Koch S W 2005 IEEE J. Quantum Electron. 41 1217
|
[38] |
Alford W J, Raymond T D and Allerman A A 2002 J. Opt. Soc. Am. B 19 663
|
[39] |
Keller U and Tropper A C 2006 Phys. Rep. 429 67
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|