Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 084208    DOI: 10.1088/1674-1056/24/8/084208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser

Song Yan-Rong (宋晏蓉)a, Guoyu He-Yang (郭于鹤洋)a, Zhang Peng (张鹏)b, Tian Jin-Rong (田金荣)a
a College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
b College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China
Abstract  We present a compact passively mode-locked semiconductor disk laser at 1045 nm. The gain chip without any post processing consists of 16 compressively strained InGaAs symmetrical step quantum wells in the active region. 3-GHz repetition rate, 4.9-ps pulse duration, and 30-mW average output power are obtained with 1.4 W of 808-nm incident pump power. The temperature stability of the laser is demonstrated to have an ideal shift rate of 0.035 nm/K of the lasing wavelength.
Keywords:  mode-locked lasers      thermal effects      diode-pumped  
Received:  07 January 2015      Revised:  29 January 2015      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  68.60.Dv (Thermal stability; thermal effects)  
  42.55.Xi (Diode-pumped lasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61177047) and the Key Project of the National Natural Science Foundation of China (Grant No. 61235010).
Corresponding Authors:  Song Yan-Rong     E-mail:  yrsong@bjut.edu.cn

Cite this article: 

Song Yan-Rong (宋晏蓉), Guoyu He-Yang (郭于鹤洋), Zhang Peng (张鹏), Tian Jin-Rong (田金荣) Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser 2015 Chin. Phys. B 24 084208

[1] Miller D A B 2000 IEEE J. Sel. Top. Quant. 6 1312
[2] Lecomte S, Paschotta R, Pawlik S, Schimidt B, Furusawa K, Malinowski A, Richardson D J and Keller U 2005 Opt. Lett. 30 290
[3] Weingarten K J, Rodwell M J W and Bloom D M 1988 IEEE J. Quantum Electron. 24 198
[4] Bartels A, Dekorsy T and Kurz H 1999 Opt. Lett. 24 996
[5] Ramaswami R and Sivarajan K 1998 Optical Networks: A Practical Perspective (San Mateo CA: Morgan Kaufmann Publishers)
[6] Hoffmann M, Sieber O D, Maas D J H C, Wittwer V J, Golling M, Südmeyer T and Keller U 2010 Opt. Express 18 10143
[7] Aschwanden A, Lorenser D, Unold H J, Paschotta R, Gini E and Keller U 2005 Appl. Phys. Lett. 86 131102
[8] Zhao Z, Bouchoule S, Song J Y, Galopin E, Harmand J C, Decobert J, Aubinand G and Oudar J L 2011 Opt. Lett. 36 4377
[9] Wilcox K G, Quarterman A H, Apostolopoulos V, Beere H E, Farrer I, Ritchieand D A and Tropper A C 2012 Opt. Express 20 7040
[10] Dupriez P, Finot C, Malinowski A, Sahu J K, Nilsson J, Richardson D J, Wilcox K G, Foreman H D and Tropper A C 2006 Opt. Express 14 9611
[11] Mihoubi Z, Wilcox K G, Elsmere S, Quarterman A, Rungsawang R, Farrer I, Beere H E, Ritchie D A, Tropper A C and Apostolopoulos V 2008 Opt. Lett. 33 2125
[12] Sieber O D, Wittwer V J, Mangold M, Hoffmann M, Golling M, Südmeyerand T and Keller U 2011 Opt. Express 19 23538
[13] Goldberg L, Mehuys D and Welch D 1994 IEEE Photon. Technol. Lett. 6 1070
[14] Mar A, Helkey R, Bowers J, Mehuys D and Welch D 1994 IEEE Photon. Technol. Lett. 6 1067
[15] Rudin B, Rutz A, Hoffmann M, Maas D J H C, Bellancourt A R, Gini E, Südmeyer T and Keller U 2008 Opt. Lett. 33 2719
[16] Laurain A, Myara M, Beaudoin G, Sagnesand I and Garnache A 2010 Opt. Express 18 14627
[17] Honninger C, Paschotta R, Morier-Genoud F, Moser M and Keller U 1999 J. Opt. Soc. Am. B 16 46
[18] Hastie J E, Morton L G, Calvez S, Dawson M D, Leinonen T, Pessa M, Gibson G and Padgett M J 2005 Opt. Express 13 7209
[19] Rahim M, Khiar A, Felder F, Fill M and Zogg H 2009 Appl. Phys. Lett. 94 201112
[20] Bellancourt A R, Maas D J H C, Rudin B, Golling M, Sudmeyer T and Keller U 2009 IET Optoelectron. 3 61
[21] Quarterman A H, Wilcox K G, Apostolopoulos V, Mihoubi Z, Elsmere S P, Farrer I, Ritchie D A and Tropper A C 2009 Nat. Photon. 3 729
[22] Lorenser D, Maas D J H C, Unold H J, Bellancourt A R, Rudin B, Gini E, Ebling D and Keller U 2006 IEEE J. Quantum Electron. 42 838
[23] Scheller M, Wang T L, Kunert B, Stolz W, Kochand S W and Moloney J V 2012 Electron. Lett. 48 588
[24] Sieber O D, Wittwer V J, Hoffmann M, Krestnikov I L, Mikhrin S S, Livshits D A, Golling M, Südmeyer T and Keller U 2012 Proc. SPIE, January 23–24, 2012, San Francisco, CA, USA 824210
[25] Zaugg C A, Klenner A, Sieber O D, Golling M, Tilma B W and Keller U 2013 CLEO, June 9–14, 2013, San Jose, CA, USA 2
[26] Bek R, Kersteen G, Kahle H, Schwarzback T, Jeter M and Michler P 2014 Appl. Phys. Lett. 105 082107
[27] Tropper A C, Foreman H D, Garnache A, Wilcox K G and Hoogland S H 2004 J. Phys. D: Appl. Phys. 37 75
[28] Cui Y D and Liu X M 2013 Opt. Express 21 18969
[29] Liu X M, Han D D, Sun Z P, Zeng C, Lu H, Mao D, Cui Y D and Wang F Q 2013 Sci. Rep. 3 2718
[30] Zaugg C A, Sun Z, Wittwer V J, Popa D, Milana S, Kulmala T S, Sundaram R S, Mangold M, Sieber O D, Golling M, Lee Y, Ahn J H, Ferrari A C and Keller U 2013 Opt. Express 21 31548
[31] Seger K, Meiser N, Choi S Y, Jung B H, Yeom D I, Rotermund F, Okhotnikov O, Laurell F and Pasiskevicius V 2013 Opt. Express 21 17806
[32] Yu Z H, Tian J R and Song Y R 2014 Chin. Phys. B 23 094206
[33] Corzine S W, Geels R S, Scott J W, Yan R H and Coldren L A 1989 IEEE J. Quantum Electron. 25 1513
[34] Yoo J, Kim K, Lee S, Lim S, Kim G, Kim J, Cho S, Lee J, Kim T and Park Y 2006 Appl. Phys. Lett. 89 131125
[35] Zhang P, Song Y R, Zhang X P, Tian J R and Zhang Z G 2010 Chin. Opt. Lett. 8 401
[36] Paschotta R, Haring R, Garnache A, Hoogland S, Tropper A C and Keller U 2002 Appl. Phys. B-Lasers Opt. 75 445
[37] Hader J, Moloney J V and Koch S W 2005 IEEE J. Quantum Electron. 41 1217
[38] Alford W J, Raymond T D and Allerman A A 2002 J. Opt. Soc. Am. B 19 663
[39] Keller U and Tropper A C 2006 Phys. Rep. 429 67
[1] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[2] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[3] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[4] High-power and high optical conversion efficiency diode-end-pumped laser with multi-segmented Nd: YAG/Nd: YVO4
Meng-Yao Wu(吴梦瑶), Peng-Fei Qu(屈鹏飞), Shi-Yu Wang(王石语), Zhen Guo(过振), De-Fang Cai(蔡德芳), Bing-Bin Li(李兵斌). Chin. Phys. B, 2018, 27(9): 094207.
[5] MXene Ti3C2Tx saturable absorber for pulsed laser at 1.3 μm
Cong Wang(王聪), Qian-Qian Peng(彭倩倩), Xiu-Wei Fan(范秀伟), Wei-Yuan Liang(梁维源), Feng Zhang(张峰), Jie Liu(刘杰), Han Zhang(张晗). Chin. Phys. B, 2018, 27(9): 094214.
[6] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[7] Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm
Bin Liu(刘斌), Li-He Zheng(郑丽和), Qing-Guo Wang(王庆国), Jun-Fang Liu(刘军芳), Liang-Bi Su(苏良碧), Hui-Li Tang(唐慧丽), Jie Liu(刘杰), Xiu-Wei Fan(范秀伟), Feng Wu(吴锋), Ping Luo(罗平), Heng-Yu Zhao(赵衡煜), Jiao-Jiao Shi(施佼佼), Nuo-Tian He(何诺天), Na Li(李纳), Qiu Li(李秋), Chao Guo(郭超), Xiao-Dong Xu(徐晓东), Zhan-Shan Wang(王占山), Jun Xu(徐军). Chin. Phys. B, 2017, 26(8): 084203.
[8] Design and performance of a composite Tm: YAG laser pumped by VBG-stabilized narrow-band laser diode
Shu-Tao Dai(戴殊韬), Jian-Hong Huang(黄见洪), Hai-Zhou Huang(黄海舟), Li-Xia Wu(吴丽霞), Jin-Hui Li(李锦辉), Jing Deng(邓晶), Yan Ge(葛燕), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2017, 26(7): 074211.
[9] Diode-pumped passively mode-locked sub-picosecond Yb:LuAG ceramic laser
Jiang-Feng Zhu(朱江峰), Kai Liu(刘凯), Jiang Li(李江), Jun-Li Wang(王军利), Yang Yu(于洋), Hui-Bo Wang(汪会波), Zi-Ye Gao(高子叶), Teng-Fei Xie(谢腾飞), Chao-Yu Li(李超宇), Yu-Bai Pan(潘裕柏), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2017, 26(5): 054213.
[10] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[11] Experimental study of electro-optical Q-switched pulsed Nd:YAG laser
A Maleki, M Kavosh Tehrani, H Saghafifar, M H Moghtader Dindarlu. Chin. Phys. B, 2016, 25(3): 034206.
[12] Design of LD in-band direct-pumping side surface polished micro-rod Nd:YVO4 laser
Wen-Qi Zhang(张文启), Fei Wang(王飞), Qiang Liu(柳强), Ma-Li Gong(巩马理). Chin. Phys. B, 2016, 25(2): 024207.
[13] Influences of cavity dispersion distribution on the output pulse properties of an all-normal-dispersion fiber laser
Li Pan (李磐), Shi Lei (时雷), Sun Qing (孙青), Feng Su-Juan (冯素娟), Mao Qing-He (毛庆和). Chin. Phys. B, 2015, 24(7): 074207.
[14] High coupling efficiency and low signal light loss (2+1)× 1 coupler
Chen Xiao (陈霄), Xiao Qi-Rong (肖起榕), Jin Guang-Yong (金光勇), Yan Ping (闫平), Gong Ma-Li (巩马理). Chin. Phys. B, 2015, 24(6): 064208.
[15] Yb-doped passively mode-locked fiber laser with Bi2Te3-deposited
Li Lu (李璐), Yan Pei-Guang (闫培光), Wang Yong-Gang (王勇刚), Duan Li-Na (段利娜), Sun Hang (孙航), Si Jin-Hai (司金海). Chin. Phys. B, 2015, 24(12): 124204.
No Suggested Reading articles found!