Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 054215    DOI: 10.1088/1674-1056/26/5/054215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Influence of low temperature on the surface deformation of deformable mirrors

Juncheng You(尤俊成)1,2,3, Chunlin Guan(官春林)1,2, Hong Zhou(周虹)1,2
1 Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu 610209, China;
2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The two factors which influence the low temperature performance of deformable mirrors (DMs) are the piezoelectric stroke of the actuators and the thermally induced surface deformation of the DM. A new theory was proposed to explain the thermally induced surface deformation of the DM: because the thermal strain between the actuators and the base leads to an additional moment according to the theory of plates, the base will be bent and the bowing base will result in an obvious surface deformation of the facesheet. The finite element method (FEM) was used to prove the theory. The results showed that the thermally induced surface deformation is mainly caused by the base deformation which is induced by the coefficient of thermal expansion (CTE) mismatching; when the facesheet has similar CTE with the actuators, the surface deformation of the DM would be smoother. Then an optimized DM design was adopted to reduce the surface deformation of the DMs at low temperature. The low temperature tests of two 61-element discrete PZT actuator sample deformable mirrors and the corresponding optimized DMs were conducted to verify the simulated results. The results showed that the optimized DMs perform well.
Keywords:  adaptive optics      deformable mirror      thermal effects      testing  
Received:  11 December 2016      Revised:  07 January 2017      Accepted manuscript online: 
PACS:  42.79.Bh (Lenses, prisms and mirrors)  
  07.07.Tw (Servo and control equipment; robots)  
  68.60.Dv (Thermal stability; thermal effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11178004).
Corresponding Authors:  Chunlin Guan     E-mail:  youjuncheng722078@126.com

Cite this article: 

Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹) Influence of low temperature on the surface deformation of deformable mirrors 2017 Chin. Phys. B 26 054215

[1] Schmutz L E 1993 Photon. Spectra 27 119
[2] Babcock H W 1953 Publ. Astron. Soc. Pac. 65 229
[3] Woolf N 1984 International Astronomical Union Colloquium 79: Very Large Telescopes, their Instrumentation and Programs, April, 9-12, 1984, Garchingbei Munchen, Germany, p. 221
[4] Dyson H M, Sharples R M and Dipper N A 2001 Opt. Express 8 17
[5] Mulvihill M L, Roche M E, Cavaco J L, Shawgo R J, Chaudhry Z and Ealey M A 2003 SPIE 5172 60
[6] Mulvihill M L, Shawgo R J, Bagwell R B and Ealey M A 2002 J. Electroceram. 8 121
[7] Goy M, Reinlein C, Kinast J and Lange N 2014 J. Micro-Nanolithogr. MEMS MOEMS 13
[8] Enya K, Kataza H and Bierden P 2009 Publ. Astron. Soc. Pac. 121 260
[9] Tyson R K 2010 Principles of Adaptive Optics (Abingdon: CRC Press)
[10] Everson J H, Aldrich R E and Albertinetti N P 1981 Opt. Eng. 20 316
[11] Bonora S 2011 Opt. Commun. 284 3467
[12] Uchino K, Tsuchiya Y, Nomura S, Sato T, Ishikawa H and Ikeda O 1981 Appl. Opt. 20 3077
[13] Forbes F, Roddier F, Poczulp G, Pinches C, Sweeny G and Dueck R 1989 J. Phys. E Sci. Instrum. 22 402
[14] Krishnamoorthy R and Bifano T 1995 Microelectronic Structures and Microelectromechanical Devices for Optical Processing and Multimedia Applications October 24,1995, Bellingham, USA, p. 96
[15] Madec P Y 2012 Adaptive Optics Systems III, July 1-6, 2012, Bellingham, USA
[16] Ning Y, Jiang W H, Ling N and Rao C H 2007 Opt. Express 15 12030
[17] Mehta P K 1990 Opt. Eng. 29 1213
[18] Edric Mark Ellis 1999 Low-Cost Bimorgh Mirrors in Adaptive Optics (Ph.D. dissertation) (London: University of London) p. 45
[19] Timoshenko S P and Woinowsky-Krieger S 1959 Theory of Plates and Shells (2nd Edn.) (Singapore: McGraw-Hill) pp. 98-100
[1] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[2] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[3] An ultrasonic multi-wave focusing and imaging method for linear phased arrays
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), and Bi-Xing Zhang(张碧星). Chin. Phys. B, 2021, 30(7): 074301.
[4] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[5] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[6] Robustness self-testing of states and measurements in the prepare-and-measure scenario with 3→1 random access code
Shi-Hui Wei(魏士慧), Fen-Zhuo Guo(郭奋卓), Xin-Hui Li(李新慧), Qiao-Yan Wen(温巧燕). Chin. Phys. B, 2019, 28(7): 070304.
[7] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[8] A slope-based decoupling algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system
Tao Cheng(程涛), Wenjin Liu(刘文劲), Boqing Pang(庞博清), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2018, 27(7): 070704.
[9] Laser beam shaping with magnetic fluid-based liquid deformable mirrors
Zhi-Zheng Wu(吴智政), Zhu Zhang(张柱), Xiang-Hui Kong(孔祥会), Jun-Qiu Wu(吴君秋), Tao Wang(王韬), Mei Liu(刘梅), Shao-Rong Xie(谢少荣). Chin. Phys. B, 2017, 26(7): 074201.
[10] Design and performance of a composite Tm: YAG laser pumped by VBG-stabilized narrow-band laser diode
Shu-Tao Dai(戴殊韬), Jian-Hong Huang(黄见洪), Hai-Zhou Huang(黄海舟), Li-Xia Wu(吴丽霞), Jin-Hui Li(李锦辉), Jing Deng(邓晶), Yan Ge(葛燕), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2017, 26(7): 074211.
[11] Co-focus experiment of segmented mirror
Bin Li(李斌), Wen-Hao Yu(于文豪), Mo Chen(陈莫), Jin-Long Tang(唐金龙), Hao Xian(鲜浩). Chin. Phys. B, 2017, 26(6): 060706.
[12] A high precision phase reconstruction algorithm for multi-laser guide stars adaptive optics
Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094214.
[13] Configuration optimization of laser guide stars and wavefront correctors for multi-conjugation adaptive optics
Li Xuan(宣丽), Bin He(何斌), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Huan-Yu Xu(徐焕宇), Xing-Yun Zhang(张杏云), Shao-Xin Wang(王少鑫), Yu-Kun Wang(王玉坤), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Xing-Hai Lu(鲁兴海). Chin. Phys. B, 2016, 25(9): 094216.
[14] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[15] High signal-to-noise ratio sensing with Shack-Hartmann wavefront sensor based on auto gain control of electron multiplying CCD
Zhao-Yi Zhu(朱召义), Da-Yu Li(李大禹), Li-Fa Hu(胡立发), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Zhao-Liang Cao(曹召良), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 090702.
No Suggested Reading articles found!