Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074208    DOI: 10.1088/1674-1056/26/7/074208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064μm

Si-Hang Wei(魏思航)1,2, Ben Ma(马奔)1,2, Ze-Sheng Chen(陈泽升)1,2, Yong-Ping Liao(廖永平)1,2, Hong-Yue Hao(郝宏玥)1,2, Yu Zhang(张宇)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  In this study, two-section mode-locked semiconductor lasers with different numbers of quantum wells and different types of waveguide structures are made. Their ultrashort pulse features are presented. The spectral dynamical behaviors in these lasers are studied in detail. In the simulation part, a two-band compressive-strained quantum well (QW) model is used to study thermally induced band-edge detuning in the amplifier and saturable absorber (SA). A sudden blue shift in laser spectrum is expected by calculating the peak of the net gain. In the experiment part, the sudden blue shift in the emission spectrum is observed in triple QW samples under certain operating conditions but remains absent in single QW samples. Experimental results reveal that blue shift phenomenon is connected with the difference between currents in two sections. Additionally, a threshold current ratio for blue-shift is also demonstrated.
Keywords:  mode-locked laser      saturable absorber      blue-shift      thermal effect  
Received:  14 November 2016      Revised:  21 February 2017      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos.2013CB933304 and 2012CB932701),the National Natural Science Foundation of China (Grant Nos.61274125 and 61435012),and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB01010200).
Corresponding Authors:  Hai-Qiao Ni, Zhi-Chuan Niu     E-mail:  nihq@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Si-Hang Wei(魏思航), Ben Ma(马奔), Ze-Sheng Chen(陈泽升), Yong-Ping Liao(廖永平), Hong-Yue Hao(郝宏玥), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064μm 2017 Chin. Phys. B 26 074208

[1] Ma X S, Zotter S, Kofler J, Jennewein T and Zeilinger A 2011 Phys. Rev. A 83 043814
[2] Pelc J S, Yu L, De Greve K, McMahon P L, Natarajan C M, Esfandyarpour V, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Yamamoto Y and Fejer M M 2012 Opt. Express 20 27510
[3] Collins M J, Xiong C, Rey I H, Vo T D, He J, Shahnia S, Reardon C, Krauss T F, Steel M J, Clark A S and Eggleton B J 2013 Nat. Commun. 4 2582
[4] De Greve K, Yu L, McMahon P L, Pelc J S, Natarajan C M, Kim N Y, Abe E, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Fejer M M and Yamamoto Y 2012 Nature 491 421
[5] Peng Y, Wang Z, Li D, Zhu J and Wei Z 2016 Chin. Phys. B 25 054205
[6] Lin B, Zhang Q L, Zhang D X, Feng B H, He J L and Zhang J Y 2016 Chin. Phys. Lett. 33 074203
[7] McMillan A R, Labonte L, Clark A S, Bell B, Alibart O, Martin A, Wadsworth W J, Tanzilli S and Rarity J G 2013 Sci. Rep. 3 2032
[8] Ngah L A, Alibart O, Labonte L, D'Auria V and Tanzilli S 2015 Laser Photonics Rev. 9 L1
[9] Lianping H, Stolarz P, Dylewicz R, et al. 2010 IEEE Photonic. Tech. L. 22 727
[10] Liu S T, Zhang R K, Lu D, Kan Q, Wang W and Ji C 2016 Chin. Phys. Lett. 33 064205
[11] Moreaux L, Sandre O, Charpak S, Blanchard-Desce M and Mertz J 2001 Biophys. J. 80 1568
[12] Avrutin E A, Marsh J H and Portnoi E L 2000 IEE P-Optoelectron. 147 251
[13] Kaiser R and Huettl B 2007 IEEE J. Sel. Top. Quant. 13 125
[14] Camacho F, Avrutin E A, Cusumano P, Helmy A S, Bryce A C and Marsh J H 1997 IEEE Photonic. Tech. L 9 1208
[15] Stolarz P M, Pusino V, Akbar J, et al. 2015 IEEE J. Sel. Top. Quant. 21 1
[16] Otto C, Luedge K, Vladimirov A G, Wolfrum M and Schoell E 2012 New J. Phys. 14 1
[17] Vladimirov A G and Turaev D 2005 Phys. Rev. A 72 033808
[18] Akbar J, Hou L, Haji M, Strain M J, Marsh J H, Catrina B A and Kelly A E 2012 Opt. Lett. 37 344
[19] Thompson M G, Rae A R, Xia M, Penty R V and White I H 2009 IEEE J. Sel. Top. Quant. 15 661
[20] Javaloyes J, Balle S, Avrutin E A, et al. 2013 International Conference on Transparent Optical Networks IEEE, 2013, Cartagena, Spain, p. 1
[21] Javaloyes J and Balle S 2010 IEEE J. Quantum Elect. 46 1023
[22] Stolarz P M, Javaloyes J, Mezosi G, et al. 2011 IEEE Photonics J. 3 1067
[23] Chuang S L 1991 Phys. Rev. B 43 9649
[24] Zhang P, Song Y, Tian J, Zhang X and Zhang Z 2009 J. Appl. Phys. 105 053103
[25] Hunsche S, Leo K, Kurz H and Köhler K 1994 Phys. Rev. B 50 5791
[26] Botha J R and Leitch A W R 2000 J. Electron. Mater. 29 1362
[27] Javaloyes J and Balle S 2012 IEEE J. Quantum Elect. 48 1519
[28] Jae-Ho H and Park S W 2004 IEEE T. Device Mat. Re. 4 292
[29] Crump P, Erbert G, Wenzel H, Frevert C, et al. 2013 IEEE J. Sel. Top. Quant. 19 1501211
[30] Agrawal G P 1991 IEEE J. Quantum Elect. 27 1843
[31] Li S G, Gong Q, Cao C F, Wang X Z, Yan J Y and Wang H Y 2015 Chin. Phys. Lett. 32 75
[32] Kuo Y H, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A B and Harris J S 2005 Nature 437 1334
[33] Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1985 Phys. Rev. B 32 1060
[34] Fan J, Zhu L, Dogan M and Jacob J 2014 Opt. Express 22 17666
[35] Piprek J, Abraham P and Bowers J E 1999 IEEE J. Sel. Top. Quant. 5 643
[36] Karim A 2004 8th International Multitopic Conference, December 24–26, 2004, Lahore, Pakistan, p. 659
[1] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[2] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[3] Quantifying plasmon resonance and interband transition contributions in photocatalysis of gold nanoparticle
Liang Dong(董亮), Chengyun Zhang(张成云), Lei Yan(严蕾), Baobao Zhang(张宝宝), Huan Chen(陈环), Xiaohu Mi(弥小虎), Zhengkun Fu(付正坤), Zhenglong Zhang(张正龙), and Hairong Zheng(郑海荣). Chin. Phys. B, 2021, 30(7): 077301.
[4] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[5] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[6] Noise-like rectangular pulses in a mode-locked double-clad Er:Yb laser with a record pulse energy
Tianyi Wu(吴田宜), Zhiyuan Dou(窦志远), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2020, 29(1): 014202.
[7] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[8] CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松). Chin. Phys. B, 2019, 28(9): 094203.
[9] Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability
Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094213.
[10] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[11] High power diode-pumped passively mode-locked Nd:YVO4 laser at repetition rate of 3.2 GHz
Meng-Yao Cheng(程梦尧), Zhao-Hua Wang(王兆华), Yan-Fang Cao(曹艳芳), Xiang-Hao Meng(孟祥昊), Jiang-Feng Zhu(朱江峰), Jun-Li Wang(王军利), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(5): 054205.
[12] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[13] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[14] Observation of self-Q-switching in bulk Yb: GdYSiO laser
Shuang Gong(公爽), Jin-Rong Tian(田金荣), He-Yang Guo Yu(郭于鹤洋), Zi-Kai Dong(董自凯), Chang-Xing Xu(许昌兴), Wen-Ping Zhang(张文平), Yan-Rong Song(宋晏蓉). Chin. Phys. B, 2018, 27(4): 044202.
[15] Design and performance of a composite Tm: YAG laser pumped by VBG-stabilized narrow-band laser diode
Shu-Tao Dai(戴殊韬), Jian-Hong Huang(黄见洪), Hai-Zhou Huang(黄海舟), Li-Xia Wu(吴丽霞), Jin-Hui Li(李锦辉), Jing Deng(邓晶), Yan Ge(葛燕), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2017, 26(7): 074211.
No Suggested Reading articles found!