ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064μm |
Si-Hang Wei(魏思航)1,2, Ben Ma(马奔)1,2, Ze-Sheng Chen(陈泽升)1,2, Yong-Ping Liao(廖永平)1,2, Hong-Yue Hao(郝宏玥)1,2, Yu Zhang(张宇)1,2, Hai-Qiao Ni(倪海桥)1,2, Zhi-Chuan Niu(牛智川)1,2 |
1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract In this study, two-section mode-locked semiconductor lasers with different numbers of quantum wells and different types of waveguide structures are made. Their ultrashort pulse features are presented. The spectral dynamical behaviors in these lasers are studied in detail. In the simulation part, a two-band compressive-strained quantum well (QW) model is used to study thermally induced band-edge detuning in the amplifier and saturable absorber (SA). A sudden blue shift in laser spectrum is expected by calculating the peak of the net gain. In the experiment part, the sudden blue shift in the emission spectrum is observed in triple QW samples under certain operating conditions but remains absent in single QW samples. Experimental results reveal that blue shift phenomenon is connected with the difference between currents in two sections. Additionally, a threshold current ratio for blue-shift is also demonstrated.
|
Received: 14 November 2016
Revised: 21 February 2017
Accepted manuscript online:
|
PACS:
|
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos.2013CB933304 and 2012CB932701),the National Natural Science Foundation of China (Grant Nos.61274125 and 61435012),and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB01010200). |
Corresponding Authors:
Hai-Qiao Ni, Zhi-Chuan Niu
E-mail: nihq@semi.ac.cn;zcniu@semi.ac.cn
|
Cite this article:
Si-Hang Wei(魏思航), Ben Ma(马奔), Ze-Sheng Chen(陈泽升), Yong-Ping Liao(廖永平), Hong-Yue Hao(郝宏玥), Yu Zhang(张宇), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川) Spectral dynamical behavior in two-section, quantum well, mode-locked laser at 1.064μm 2017 Chin. Phys. B 26 074208
|
[1] |
Ma X S, Zotter S, Kofler J, Jennewein T and Zeilinger A 2011 Phys. Rev. A 83 043814
|
[2] |
Pelc J S, Yu L, De Greve K, McMahon P L, Natarajan C M, Esfandyarpour V, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Yamamoto Y and Fejer M M 2012 Opt. Express 20 27510
|
[3] |
Collins M J, Xiong C, Rey I H, Vo T D, He J, Shahnia S, Reardon C, Krauss T F, Steel M J, Clark A S and Eggleton B J 2013 Nat. Commun. 4 2582
|
[4] |
De Greve K, Yu L, McMahon P L, Pelc J S, Natarajan C M, Kim N Y, Abe E, Maier S, Schneider C, Kamp M, Höfling S, Hadfield R H, Forchel A, Fejer M M and Yamamoto Y 2012 Nature 491 421
|
[5] |
Peng Y, Wang Z, Li D, Zhu J and Wei Z 2016 Chin. Phys. B 25 054205
|
[6] |
Lin B, Zhang Q L, Zhang D X, Feng B H, He J L and Zhang J Y 2016 Chin. Phys. Lett. 33 074203
|
[7] |
McMillan A R, Labonte L, Clark A S, Bell B, Alibart O, Martin A, Wadsworth W J, Tanzilli S and Rarity J G 2013 Sci. Rep. 3 2032
|
[8] |
Ngah L A, Alibart O, Labonte L, D'Auria V and Tanzilli S 2015 Laser Photonics Rev. 9 L1
|
[9] |
Lianping H, Stolarz P, Dylewicz R, et al. 2010 IEEE Photonic. Tech. L. 22 727
|
[10] |
Liu S T, Zhang R K, Lu D, Kan Q, Wang W and Ji C 2016 Chin. Phys. Lett. 33 064205
|
[11] |
Moreaux L, Sandre O, Charpak S, Blanchard-Desce M and Mertz J 2001 Biophys. J. 80 1568
|
[12] |
Avrutin E A, Marsh J H and Portnoi E L 2000 IEE P-Optoelectron. 147 251
|
[13] |
Kaiser R and Huettl B 2007 IEEE J. Sel. Top. Quant. 13 125
|
[14] |
Camacho F, Avrutin E A, Cusumano P, Helmy A S, Bryce A C and Marsh J H 1997 IEEE Photonic. Tech. L 9 1208
|
[15] |
Stolarz P M, Pusino V, Akbar J, et al. 2015 IEEE J. Sel. Top. Quant. 21 1
|
[16] |
Otto C, Luedge K, Vladimirov A G, Wolfrum M and Schoell E 2012 New J. Phys. 14 1
|
[17] |
Vladimirov A G and Turaev D 2005 Phys. Rev. A 72 033808
|
[18] |
Akbar J, Hou L, Haji M, Strain M J, Marsh J H, Catrina B A and Kelly A E 2012 Opt. Lett. 37 344
|
[19] |
Thompson M G, Rae A R, Xia M, Penty R V and White I H 2009 IEEE J. Sel. Top. Quant. 15 661
|
[20] |
Javaloyes J, Balle S, Avrutin E A, et al. 2013 International Conference on Transparent Optical Networks IEEE, 2013, Cartagena, Spain, p. 1
|
[21] |
Javaloyes J and Balle S 2010 IEEE J. Quantum Elect. 46 1023
|
[22] |
Stolarz P M, Javaloyes J, Mezosi G, et al. 2011 IEEE Photonics J. 3 1067
|
[23] |
Chuang S L 1991 Phys. Rev. B 43 9649
|
[24] |
Zhang P, Song Y, Tian J, Zhang X and Zhang Z 2009 J. Appl. Phys. 105 053103
|
[25] |
Hunsche S, Leo K, Kurz H and Köhler K 1994 Phys. Rev. B 50 5791
|
[26] |
Botha J R and Leitch A W R 2000 J. Electron. Mater. 29 1362
|
[27] |
Javaloyes J and Balle S 2012 IEEE J. Quantum Elect. 48 1519
|
[28] |
Jae-Ho H and Park S W 2004 IEEE T. Device Mat. Re. 4 292
|
[29] |
Crump P, Erbert G, Wenzel H, Frevert C, et al. 2013 IEEE J. Sel. Top. Quant. 19 1501211
|
[30] |
Agrawal G P 1991 IEEE J. Quantum Elect. 27 1843
|
[31] |
Li S G, Gong Q, Cao C F, Wang X Z, Yan J Y and Wang H Y 2015 Chin. Phys. Lett. 32 75
|
[32] |
Kuo Y H, Lee Y K, Ge Y, Ren S, Roth J E, Kamins T I, Miller D A B and Harris J S 2005 Nature 437 1334
|
[33] |
Chemla D S, Damen T C, Gossard A C, Wiegmann W, Wood T H and Burrus C A 1985 Phys. Rev. B 32 1060
|
[34] |
Fan J, Zhu L, Dogan M and Jacob J 2014 Opt. Express 22 17666
|
[35] |
Piprek J, Abraham P and Bowers J E 1999 IEEE J. Sel. Top. Quant. 5 643
|
[36] |
Karim A 2004 8th International Multitopic Conference, December 24–26, 2004, Lahore, Pakistan, p. 659
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|