Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 124205    DOI: 10.1088/1674-1056/24/12/124205

Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile

M H Moghtader Dindarlu, M Kavosh Tehrani, H Saghafifar, A Maleki
Institute of Optics and Laser, Malek-Ashtar University of Technology, Shahin Shahr, Postal Code, 83145/115, Iran
Abstract  In this paper, according to the temperature and strain distribution obtained by considering the Gaussian pump profile and dependence of physical properties on temperature, we derive an analytical model for refractive index variations of the diode side-pumped Nd:YAG laser rod. Then we evaluate this model by numerical solution and our maximum relative errors are 5% and 10% for variations caused by thermo-optical and thermo-mechanical effects; respectively. Finally, we present an analytical model for calculating the focal length of the thermal lens and spherical aberration. This model is evaluated by experimental results.
Keywords:  side-pumped laser rod      Gaussian pump profile      thermal effects      thermal lens      spherical aberration  
Received:  18 May 2015      Revised:  23 June 2015      Accepted manuscript online: 
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.25.Lc (Birefringence)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Corresponding Authors:  M H Moghtader Dindarlu     E-mail:

Cite this article: 

M H Moghtader Dindarlu, M Kavosh Tehrani, H Saghafifar, A Maleki Analytical model for thermal lensing and spherical aberration in diode side-pumped Nd:YAG laser rod having Gaussian pump profile 2015 Chin. Phys. B 24 124205

[1] Koechner W 2006 Solid-state Laser Engineering (Berlin: Springer)
[2] Hodgson N and Weber H 1993 IEEE J. Quantum Electron. 29 2497
[3] Montmerle Bonnefois A, Gilbert M, Farcage D, Thro P Y and Weulersse J M 2005 Advanced Solid State Photonics OSA TOPS 98 59833
[4] Koechner W 1970 Appl. Opt. 9 2548
[5] Huang Y S, Tsai H L and Chang F L 2007 Opt. Commun. 273 515
[6] Chenais S, Druon F, Forget S, Balembois F and Georges P 2006 Prog. Quantum Electron. 30 89
[7] Moshe I and Jackel S 2005 J. Opt. Soc. Am. B 22 1228
[8] Liu S, Song F, Cai H, Li T, Tian B, Wu Z and Tian J 2008 J. Phys. D: Appl. Phys. 41 035104
[9] Bourderionneta J, Brignona A, Huignarda J P and Frey R 2002 Opt. Commun. 204 299
[10] Sennaroglu A 2000 J. Phys. D: Appl. Phys. 33 1478
[11] Liu C, Riesbeck T, Wang X, Ge J, Xiang Z, Chen J and Eichler H J 2008 Opt. Commun. 281 5222
[12] Mac Donald M P, Graf T, Balmer J E and Weber H P 2000 Opt. Commun. 178 383
[13] Weber R, Graf T and Weber H P 2000 IEEE J. Quantum Electron. 36 757
[14] Kojima T, Fujikawa S and Yasui K 1999 IEEE J. Quantum Electron. 35 377
[15] Schwarz j, Ramsey M, Headley D, Rambo P, Smith I and Porter J 2006 Appl. Phys. B 82 275
[16] Stucinskas D, Varanavicius A, Antipenkov R, Grishin M, Kodz J, Melninkaitis A and Vanagas A 2009 Lithuanian Journal of Physics 49 433
[17] Greiner U J and Klingenberg H H 1994 Opt. Lett. 19 1207
[18] Liu C 2009 Laser Phys. 19 2155
[19] Wang Y, Inoue K, Kan H, Ogawa T and Wada S 2009 J. Opt. A: Pure Appl. Opt. 11 125501
[20] Chetkin S A and Vdovin G V 1993 Opt. Commun. 100 159
[21] Roth M S, Wyss E W, Graf T and Weber H P 2004 IEEE J. Quantum Electron. 40 1700
[22] Leibush E, Jackel S M, Goldring S, Moshe I, Tzuk Y and Meir A 2005 Proc. Int. Conf. on Advanced Solid-State Photonics (Vienna) Technical Digest (Optical Society of America), paper MB45
[23] Wyss E, Roth M, Graf T and Weber H P 2002 IEEE J. Quantum Electron. 36 1620
[24] Sovizi M, Massudi R 2007 Opt. Commun. 275 206
[25] Cousins A K 1992 IEEE J. Quantum Electron. 28 1057
[26] Schmid M, Weber R, Graf Th, and Roos M, and Weber H P 2000 IEEE J. Quantum Electron. 36 620
[27] Montmerle Bonnefois A, Gilbert M, Thro P Y and Weulersse J M 2006 Opt. Commun. 259 223
[28] Schmid M, Graf Th, and Weber H P 2000 J. Opt. Soc. Am. B 17 1398
[29] Fan S, Zhang X, Wang Q, Li S, Ding S and Su F 2006 Opt. Commun. 266 620
[30] Liu L, Wang X, Guo S, Xu X and Lu Q 2011 Opt. Commun. 284 1274
[31] Wang X, Xu X, Li X and Lu Q 2007 Appl. Opt. 22 5237
[32] Shi P, Chen W, Li L and Gan A 2007 Appl. Opt. 46 6655
[33] Weber R, Neuenschwander B and Weber H P 1999 Opt. Mater. 11 245
[34] Chenais S, Balembois F, Druon F, Lucas-Leclin G and Georges P 2004 IEEE J. Quantum Electron. 40 1217
[35] Chenais S, Balembois F, Druon F, Lucas-Leclin G and Georges P 2004 IEEE J. Quantum Electron. 40 1235
[36] Xie W J, Tang S C, Lam Y L, Liu J G, Yang H R, Gu J H, Tan W S and Zhou F 2000 Opt. Laser Technol. 32 199
[37] Foster J D and Osterink L M 1970 J. Appl. Phys. 41 3656
[38] Eggleston J M, Kane T J, Kuhn K, Unterhahrer J and Byer R L 1984 IEEE J. Quantum Electron. 20 289
[39] Moghtader Dindarlu M H, Maleki A, Saghafifar H, Kavosh Tehrani M and Baghali S 2015 Laser Phys. 25 045001
[40] Sumida D S, Rockwell D A and Mangir M S 1988 IEEE J. Quantum Electron. 24 985
[41] Didierjean J, Herault E, Balembois F and Georges P 2008 Opt. Express 16 8995
[42] Brown D C 1998 IEEE J. Quantum Electron. 34 2383
[43] Slack G A and Oliver D W 1971 Phys. Rev. B 4 592
[44] Pollak T M, Wing W F, Grasso R J, Chicklis E P and Jenssen H P 1982 IEEE J. Quantum Electron. 18 159
[45] Fauchiger J, Albers P and Weber H P 1992 IEEE J. Quantum Electron. 28 1046
[46] Nikogosyan D N 1997 Properties of Optical and Laser-related Materials: A Handbook (New York: Wiley)
[47] Wynne R, Daneu J L and Fan T Y 1999 Appl. Opt. 38 3282
[48] Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[1] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[2] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
[3] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[4] Thermal resistance matrix representation of thermal effects and thermal design of microwave power HBTs with two-dimensional array layout
Rui Chen(陈蕊), Dong-Yue Jin(金冬月), Wan-Rong Zhang(张万荣), Li-Fan Wang(王利凡), Bin Guo(郭斌), Hu Chen(陈虎), Ling-Han Yin(殷凌寒), Xiao-Xue Jia(贾晓雪). Chin. Phys. B, 2019, 28(9): 098502.
[5] Non-thermal effects of 0.1 THz radiation on intestinal alkaline phosphatase activity and conformation
Xin-Xin Zhang(张欣欣), Ming-Xia He(何明霞), Yu Chen(陈宇), Cheng Li(李程), Jin-Wu Zhao(赵晋武), Peng-Fei Wang(王鹏騛), Xin Peng(彭鑫). Chin. Phys. B, 2019, 28(12): 128702.
[6] Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Lun-Zhen Hu(胡伦珍), Zhi-Yuan Han(韩志远), Mao-Jie Cheng(程毛杰), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2019, 28(11): 114208.
[7] Design and performance of a composite Tm: YAG laser pumped by VBG-stabilized narrow-band laser diode
Shu-Tao Dai(戴殊韬), Jian-Hong Huang(黄见洪), Hai-Zhou Huang(黄海舟), Li-Xia Wu(吴丽霞), Jin-Hui Li(李锦辉), Jing Deng(邓晶), Yan Ge(葛燕), Wen-Xiong Lin(林文雄). Chin. Phys. B, 2017, 26(7): 074211.
[8] Influence of low temperature on the surface deformation of deformable mirrors
Juncheng You(尤俊成), Chunlin Guan(官春林), Hong Zhou(周虹). Chin. Phys. B, 2017, 26(5): 054215.
[9] Compact, temperature-stable multi-gigahertz passively modelocked semiconductor disk laser
Song Yan-Rong (宋晏蓉), Guoyu He-Yang (郭于鹤洋), Zhang Peng (张鹏), Tian Jin-Rong (田金荣). Chin. Phys. B, 2015, 24(8): 084208.
[10] Self-organized voids revisited:Experimental verification of the formation mechanism
Song Juan (宋娟), Ye Jun-Yi (叶俊毅), Qian Meng-Di (钱梦迪), Luo Fang-Fang (骆芳芳), Lin Xian (林贤), Bian Hua-Dong (卞华栋), Dai Ye (戴晔), Ma Guo-Hong (马国宏), Chen Qing-Xi (陈庆希), Jiang Yan (姜燕), Zhao Quan-Zhong (赵全忠), Qiu Jian-Rong (邱建荣). Chin. Phys. B, 2014, 23(7): 077901.
[11] The effect of spherical aberration on temperature distribution inside glass by irradiation of a high repetition rate femtosecond pulse laser
Dai Ye(戴晔), Yu Guang-Jun(余光军), Wu Guo-Rui(武国睿), Ma Hong-Liang(马洪良), Yan Xiao-Na(阎晓娜), and Ma Guo-Hong(马国宏) . Chin. Phys. B, 2012, 21(2): 025201.
[12] Dependence of curvature type of thermal lensing on number of bounces in a zigzag slab laser: numerical modeling
Fu Xing(付星), Liu Qiang(柳强), Yan Xing-Peng(闫兴鹏), and Gong Ma-Li(巩马理) . Chin. Phys. B, 2011, 20(11): 114210.
[13] Influence of spherical aberrations on fundamental mode beam quality under different laser resonators
Xiang Zhen(项震), Hu Miao(胡淼), Ge Jian-Hong(葛剑虹), Zhao Zhi-Gang(赵智刚), Wang Sha(汪莎), Liu Chong(刘崇), and Chen Jun(陈军). Chin. Phys. B, 2009, 18(7): 2806-2815.
[14] Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution
Yang Jun-Yi(杨俊义), Song Ying-Lin(宋瑛林), and Gu Ji-Hua(顾济华). Chin. Phys. B, 2009, 18(7): 2828-2834.
[15] Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams
Xu Sheng-Hua (徐升华), Li Yin-Mei (李银妹), Lou Li-Ren (楼立人). Chin. Phys. B, 2006, 15(6): 1391-1397.
No Suggested Reading articles found!