Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 124204    DOI: 10.1088/1674-1056/22/12/124204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mid-IR dual-wavelength difference frequency generation in uniform grating PPLN using index dispersion control

Chang Jian-Hua (常建华)a, Sun Qing (孙青)b, Ge Yi-Xian (葛益娴)a, Wang Ting-Ting (王婷婷)b, Tao Zai-Hong (陶在红)a, Zhang Chuang (张闯)a
a Jiangsu Key Laboratory of Meteorological Observation and Information Processing, Nanjing University of Information Science & Technology, Nanjing 210044, China;
b Optics Division, National Institute of Metrology, Beijing 100013, China
Abstract  A novel widely tunable dual-wavelength mid-IR difference frequency generation (DFG) scheme with uniform grating periodically poled lithium niobate (PPLN) is presented in this paper. By using the temperature-dependent dispersion property of PPLN, the quasi-phase matching (QPM) peak for the pump may evolve into two separate ones and the wavelength spacing between them increases with the decrease of the crystal temperature. Such two pump QPM peaks may allow simultaneous dual-wavelength mid-IR laser radiations while properly setting the two fundamental pump wavelengths. With this scheme, mid-IR dual-wavelength laser radiations at around 3.228 and 3.548, 3.114 and 3.661, and 3.019 and 3.76 μm, are experimentally achieved for the crystal temperatures of 90, 65, and 30 ℃, respectively, based on the fiber laser fundamental lights.
Keywords:  mid-IR      difference frequency generation      quasi-phase matching      dual-wavelength  
Received:  27 August 2013      Revised:  18 September 2013      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.-v (Laser optical systems: design and operation)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.72.Ai (Infrared sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374161), the Open Research Project of Jiangsu Provincial Key Laboratory of Meteorological Observation and Information Processing, China (Grant No. KDXS1206), and the Project Funded by the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions, China.
Corresponding Authors:  Chang Jian-Hua     E-mail:  jianhuachang@nuist.edu.cn

Cite this article: 

Chang Jian-Hua (常建华), Sun Qing (孙青), Ge Yi-Xian (葛益娴), Wang Ting-Ting (王婷婷), Tao Zai-Hong (陶在红), Zhang Chuang (张闯) Mid-IR dual-wavelength difference frequency generation in uniform grating PPLN using index dispersion control 2013 Chin. Phys. B 22 124204

[1] Zhang Q L, Zhang J, Qiu K S, Zhang D X, Feng B H and Zhang J Y 2012 Chin. Phys. B 21 054213
[2] Zhang T L, Zhang B G, Xu D G, Wang P, Ji F and Yao J Q 2008 Chin. Phys. B 17 633
[3] Geng Y F, Tan X L, Li X J and Yao J Q 2010 Chin. Phys. B 19 114209
[4] Ciaffoni L, Grilli R, Hancock G, Orr-Ewing A J, Peverall R and Ritchie G A D 2009 Appl. Phys. B 94 517
[5] Erny C, Moutzouris K, Biegert J, Kühlke, Adler F, Leitenstorfer A and Keller U 2007 Opt. Lett. 32 1138
[6] Kosterev A, Wysocki G, Bakhirkin Y, So S, Lewicki R, Fraser M, Tittel F and Curl R F 2008 Appl. Phys. B 90 165
[7] Liu W, Sun J Q and Kurz J 2003 Opt. Commun. 216 239
[8] Asobe M, Tadanaga O, Miyazawa H, Nishida Y and Suzuki H 2003 Opt. Lett. 28 558
[9] Asobe M, Tadanaga O, Umeki T, Yanagawa T, Nishida Y, Magari K and Suzuki H 2007 Opt. Lett. 32 3388
[10] Liu X M, Zhang H Y and Guo Y L 2001 J. Lightwave Technol. 19 1785
[11] Lee Y W, Fan F C, Huang Y C, Gu B Y, Dong B Z and Chou M H 2002 Opt. Lett. 27 2191
[12] Jiang J, Chang J H, Feng S J, Mao Q H and Liu W Q 2009 Chin. Phys. Lett. 26 124214
[13] Deng L H, Gao X M, Cao Z S, Chen W D, Yuan Y Q, Zhang W J and Gong Z B 2006 Opt. Commun. 268 110
[14] Chang J H, Mao Q H, Feng S J, Jiang J, Li X L, Tian Y Y, Xu C Q and Liu W Q 2011 Appl. Phys. B 104 851
[1] THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves
Zhongyang Li(李忠洋), Qianze Yan(颜钤泽), Pengxiang Liu(刘鹏翔), Binzhe Jiao(焦彬哲), Gege Zhang(张格格), Zhiliang Chen(陈治良), Pibin Bing(邴丕彬), Sheng Yuan(袁胜), Kai Zhong(钟凯), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(7): 074209.
[2] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[3] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[4] Possibility to break through limitation of measurement range in dual-wavelength digital holography
Tuo Li(李拓), Wen-Xiu Lei(雷文秀), Xin-Kai Sun(孙鑫凯), Jun Dong(董军), Ye Tao(陶冶), and Yi-Shi Shi(史祎诗). Chin. Phys. B, 2021, 30(9): 094201.
[5] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[6] High-efficiency terahertz wave generation with multiple frequencies by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Binzhe Jiao(焦彬哲), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Gege Zhang(张格格), Qianze Yan(颜钤泽), Pibin Bing(邴丕彬), Fengrui Zhang(张风蕊), Zhan Wang(王湛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(4): 044211.
[7] Theoretical research on terahertz wave generation from planar waveguide by optimized cascaded difference frequency generation
Zhongyang Li(李忠洋), Jia Zhao(赵佳), Wenkai Liu(刘文锴), Qingfeng Hu(胡青峰), Yongjun Li(李永军), Binzhe Jiao(焦彬哲), Pibin Bing(邴丕彬), Hongtao Zhang(张红涛), Lian Tan(谭联), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(2): 024209.
[8] Broadband mid-infrared pulse via intra-pulse difference frequency generation based on supercontinuum from multiple thin plates
Hang-Dong Huang(黄杭东), Chen-Yang Hu(胡晨阳), Hui-Jun He(何会军), Hao Teng(滕浩), Zhi-Yuan Li(李志远), Kun Zhao(赵昆), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(11): 114203.
[9] Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser
Yu Zheng(郑煜), Jin-Rong Tian(田金荣), Zi-Kai Dong(董自凯), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉). Chin. Phys. B, 2017, 26(7): 074212.
[10] Passively Q-switched dual-wavelength Yb:LSO laser based on tungsten disulphide saturable absorber
Jing-Hui Liu(刘京徽), Jin-Rong Tian(田金荣), He-Yang Guoyu(郭于鹤洋), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉), Xin-Ping Zhang(张新平), Liang-Bi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2016, 25(3): 034207.
[11] Reflective graphene oxide absorber for passively mode-locked laser operating at nearly 1 μm
Yang Ji-Min (杨济民), Yang Qi (杨琦), Liu Jie (刘杰), Wang Yong-Gang (王勇刚), Yuen H. Tsang. Chin. Phys. B, 2013, 22(9): 094210.
[12] Dual-wavelength distributed Bragg reflector semiconductor laser based on composite resonant cavity
Chen Cheng (陈琤), Zhao Ling-Juan (赵玲娟), Qiu Ji-Fang (邱吉芳), Liu Yang (刘扬), Wang Wei (王圩), Lou Cai-Yun (娄采云). Chin. Phys. B, 2012, 21(9): 094208.
[13] Comparison of nitride-based dual-wavelength light- emitting diodes with an InAlN electron-blocking layer and with p-type doped barriers
Zhang Yun-Yan(张运炎) and Fan Guang-Han(范广涵) . Chin. Phys. B, 2011, 20(4): 048502.
[14] Dual-wavelength dissipative soliton operation of an erbium-doped fibre laser using a nonlinear polarization rotation technique
Cao Wen-Jun(曹文俊), Xu Wen-Cheng(徐文成), Luo Zhi-Chao(罗智超), Wang Lu-Yan (王璐燕),Wang Hui-Yi(王会义), Dong Jiang-Li (董江莉), and Luo Ai-Ping (罗爱平) . Chin. Phys. B, 2011, 20(11): 114209.
[15] Temperature-dependent second harmonic generation process based on an MgO-doped periodically poled lithium niobate waveguide
Shen Shi-Kui(沈世奎), Yang Ai-Ying(杨爱英), Zuo Lin(左林), Cui Jian-Min(崔建民), and Sun Yu-Nan(孙雨南) . Chin. Phys. B, 2011, 20(10): 104206.
No Suggested Reading articles found!