Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117313    DOI: 10.1088/1674-1056/22/11/117313
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor–network model

Lin Ling-Fang, Huang Xin, Dong Shuai
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  The magnetism and conductance of two-dimensional Heisenberg spin lattices are investigated by using Monte Carlo simulations to qualitatively understand a fascinating magnetoresistance effect observed in magnetic materials and their artificial multilayers. Various magnetic profiles, including a pure ferromagnetic, a pure antiferromagnetic, two phase competitive cases, and an artificial sandwich junction, are simulated, and their conductances are calculated based on an extended resistor–network model. Magnetoresistance is observed in some lattices, which is prominent when the system is near phase boundaries. Compared with real manganites, the absence of colossal magnetoresistance in our simulation implies the essential role of charge ordered phase which is not included in our pure spin model. However, our model provides an intuitive understanding of the spin-dependent conductance in large scale.
Keywords:  magnetoresistance      resistor–network model      phase competition  
Received:  07 April 2013      Revised:  09 May 2013      Published:  28 September 2013
PACS:  73.43.Qt (Magnetoresistance)  
  75.10.Hk (Classical spin models)  
  75.40.Mg (Numerical simulation studies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004027), the New Century Excellent Talents in University of China (Grant No. 10-0325), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100092120032), and the National Student Research Training Program (Grant No. 1310286044).
Corresponding Authors:  Dong Shuai     E-mail:  sdong@seu.edu.cn

Cite this article: 

Lin Ling-Fang, Huang Xin, Dong Shuai Simulation of the magnetoresistance of Heisenberg spin lattices using the resistor–network model 2013 Chin. Phys. B 22 117313

[1] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Imada M, Fujimori A and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[3] Dagotto E, Hotta T and Moreo A 2001 Phys. Rep. 344 1
[4] Dagotto E 2005 Science 309 257
[5] Tokura Y 2006 Rep. Prog. Phys. 69 797
[6] Zener C 1951 Phys. Rev. 81 440
[7] Zener C 1951 Phys. Rev. 82 403
[8] Goodenough J B 1955 Phys. Rev. 100 564
[9] Millis A J, Littlewood P B and Shraiman B I 1995 Phys. Rev. Lett. 74 5144
[10] Millis A J 1998 Nature 392 147
[11] Dagotto E 2005 New J. Phys. 7 67
[12] Shen J, Ward T Z and Yin L F 2013 Chin. Phys. B 22 017501
[13] Aliaga H, Magnoux D, Moreo A, Poilblanc D, Yunoki S and Dagotto E 2003 Phys. Rev. B 68 104405
[14] Şen C, Alvarez G and Dagotto E 2007 Phys. Rev. Lett. 98 127202
[15] Yu R, Dong S, Şen C, Alvarez G and Dagotto E 2008 Phys. Rev. B 77 214434
[16] Şen C, Alvarez G and Dagotto E 2010 Phys. Rev. Lett. 105 097203
[17] Şen C, Liang S and Dagotto E 2012 Phys. Rev. B 85 174418
[18] Chen L P, Ma Y B, Song X F, Lian G J, Zhang Y and Xiong G C 2008 Chin. Phys. Lett. 25 3381
[19] Dong S, Yu R, Yunoki S, Liu J M and Dagotto E 2008 Phys. Rev. B 78 064414
[20] Dong S, Yu R, Yunoki S, Liu J M and Dagotto E 2008 Phys. Rev. B 78 155121
[21] Mayr M, Moreo A, Vergés J A, Arispe J, Feiguin A and Dagotto E 2001 Phys. Rev. Lett. 86 135
[22] Caparica A A, Bunker A and Landau D P 2000 Phys. Rev. B 62 9458
[23] Tsai S H and Landau D P 2000 J. Appl. Phys. 87 5807
[24] Dong S, Zhu H, Wu X and Liu J M 2005 Appl. Phys. Lett. 86 022501
[25] Dong S, Zhu H and Liu J M 2007 Phys. Rev. B 76 132409
[26] Ju S, Cai T Y and Li Z Y 2005 Phys. Rev. B 72 184413
[27] Ward T Z, Liang S, Fuchigami K, Yin L F, Dagotto E, Plummer E W and Shen J 2008 Phys. Rev. Lett. 100 247204
[28] Yao X Y, Dong S, Zhu H and Liu J M 2005 J. Appl. Phys. 98 093908
[29] Li X Q, Xu X G, Wang S, Wu Y, Zhang D L, Miao J and Jiang Y 2012 Chin. Phys. B 21 107307
[1] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[2] Anomalous magnetoresistance in detwinned EuFe2As2
Zhuang Xu(徐状), Junxiang Pan(潘俊香), Zhen Tao(陶镇), Ruixian Liu(刘瑞鲜), Guotai Tan(谈国太). Chin. Phys. B, 2020, 29(7): 077402.
[3] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[4] Investigation of the magnetoresistance in EuS/Nb:SrTiO3 junction
Jia Lu(芦佳), Yu-Lin Gan(甘渝林), Yun-Lin Lei(雷蕴麟), Lei Yan(颜雷), and Hong Ding(丁洪)$. Chin. Phys. B, 2020, 29(11): 117503.
[5] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[6] Tunneling magnetoresistance in ferromagnet/organic-ferromagnet/metal junctions
Yan-Qi Li(李彦琪), Hong-Jun Kan(阚洪君), Yuan-Yuan Miao(苗圆圆), Lei Yang(杨磊), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), Gui-Chao Hu(胡贵超). Chin. Phys. B, 2020, 29(1): 017303.
[7] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
[8] Model of output characteristics of giant magnetoresistance (GMR) multilayer sensor
Jiao-Feng Zhang(张教凤), Zheng-Hong Qian(钱正洪), Hua-Chen Zhu(朱华辰), Ru Bai(白茹), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2019, 28(8): 087501.
[9] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[10] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[11] Thickness dependent manipulation of uniaxial magnetic anisotropy in Fe-thin films by oblique deposition
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), ZongKai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(9): 097504.
[12] Room-temperature large photoinduced magnetoresistance in semi-insulating gallium arsenide-based device
Xiong He(何雄), Zhi-Gang Sun(孙志刚). Chin. Phys. B, 2018, 27(6): 067204.
[13] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[14] Spin Seebeck effect and spin Hall magnetoresistance in the Pt/Y3Fe5O12 heterostructure under laser-heating
Shuanhu Wang(王拴虎), Gang Li(李刚), Jianyuan Wang(王建元), Yingyi Tian(田颖异), Hongrui Zhang(张洪瑞), Lvkuan Zou(邹吕宽), Jirong Sun(孙继荣), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117201.
[15] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
No Suggested Reading articles found!