Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(11): 117312    DOI: 10.1088/1674-1056/22/11/117312
RAPID COMMUNICATION Prev   Next  

Coupling-matrix approach to the Chern number calculation in disordered systems

Zhang Yi-Fu (张议夫)a, Yang Yun-You (杨运友)b, Ju Yan (鞠艳)a, Sheng Li (盛利)a, Shen Rui (沈瑞)a, Sheng Dong-Ning (盛冬宁)c, Xing Ding-Yu (邢定钰)a
a National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China;
b College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, China;
c Department of Physics and Astronomy, California State University, Northridge, California 91330, USA
Abstract  The Chern number is often used to distinguish different topological phases of matter in two-dimensional electron systems. A fast and efficient coupling-matrix method is designed to calculate the Chern number in finite crystalline and disordered systems. To show its effectiveness, we apply the approach to the Haldane model and the lattice Hofstadter model, and obtain the correct quantized Chern numbers. The disorder-induced topological phase transition is well reproduced, when the disorder strength is increased beyond the critical value. We expect the method to be widely applicable to the study of topological quantum numbers.
Keywords:  Chern number      topology      disorder  
Received:  18 July 2013      Revised:  11 September 2013      Accepted manuscript online: 
PACS:  73.43.Nq (Quantum phase transitions)  
  71.23.An (Theories and models; localized states)  
  72.80.Vp (Electronic transport in graphene)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2009CB929504, 2011CB922103, and 2010CB923400), the National Natural Science Foundation of China (Grant Nos. 11225420, 11074110, 11174125, 11074109, 11074111, and 91021003), the Priority Academic Program Development of Jiangsu Higher Education Institutions, China, the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010364), the US NSF (Grant Nos. DMR-0906816 and DMR-1205734), and the Princeton MRSEC (Grant No. DMR-0819860).
Corresponding Authors:  Sheng Li, Xing Ding-Yu     E-mail:  shengli@nju.edu.cn;dyxing@nju.edu.cn

Cite this article: 

Zhang Yi-Fu (张议夫), Yang Yun-You (杨运友), Ju Yan (鞠艳), Sheng Li (盛利), Shen Rui (沈瑞), Sheng Dong-Ning (盛冬宁), Xing Ding-Yu (邢定钰) Coupling-matrix approach to the Chern number calculation in disordered systems 2013 Chin. Phys. B 22 117312

[1] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[2] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[3] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[4] He K, Ma X C, Chen X, L¨u L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
[5] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[6] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[8] Qi X L and Zhang S C 2010 Phys. Today 63 33
[9] Thouless D J 1998 Topological Quantum Numbers in Nonrelativistic Physics (Singapore: World Scientific)
[10] Thouless D J, Kohmoto M, Nightingale M P and Nijs M D 1982 Phys. Rev. Lett. 49 405
[11] Thouless D J 1984 J. Phys. C 17 L325
[12] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
[13] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[14] Prodan E 2009 Phys. Rev. B 80 125327
[15] Prodan E 2010 New J. Phys. 12 065003
[16] Xu Z, Sheng L, Xing D Y, Prodan E and Sheng D N 2012 Phys. Rev. B 85 075115
[17] Sheng L, Li H C, Yang Y Y, Sheng D N and Xing D Y 2013 Chin. Phys. B 22 067201
[18] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[19] Huo Y and Bhatt R N 1992 Phys. Rev. Lett. 68 1375
[20] Yang K and Bhatt R N 1996 Phys. Rev. Lett. 76 1316
[21] Sheng D N and Weng Z Y 1995 Phys. Rev. Lett. 75 2388
[22] Sheng D N and Weng Z Y 1997 Phys. Rev. Lett. 78 318
[23] Sheng D N and Weng Z Y 1998 Phys. Rev. Lett. 80 580
[24] Yang K and Bhatt R N 1999 Phys. Rev. B 59 8144
[25] Kitaev A 2006 Ann. Phys. 321 2
[26] Bianco R and Resta R 2011 Phys. Rev. B 84 241106
[27] Ceresoli D and Resta R 2007 Phys. Rev. B 76 012405
[28] Prodan E, Hughes T L and Bernevig B A 2010 Phys. Rev. Lett. 105 115501
[29] Baer M 1975 Chem. Phys. Lett. 35 112
[30] Baer M 1980 Mol. Phys. 40 1011
[31] Baer M 2000 J. Phys. Chem. A 104 3181
[32] Onoda M, Avishai Y and Nagaosa N 2007 Phys. Rev. Lett. 98 076802
[33] Hofstadter D R 1976 Phys. Rev. B 14 2239
[34] Liu D Z, Xie X C and Niu Q 1996 Phys. Rev. Lett. 76 975
[35] Xie X C, Liu D Z, Sundaram B and Niu Q 1996 Phys. Rev. B 54 4966
[36] Ando T 1989 Phys. Rev. B 40 5325
[1] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[2] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Filling up complex spectral regions through non-Hermitian disordered chains
Hui Jiang and Ching Hua Lee. Chin. Phys. B, 2022, 31(5): 050307.
[5] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[8] Disorder in parity-time symmetric quantum walks
Peng Xue(薛鹏). Chin. Phys. B, 2022, 31(1): 010311.
[9] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[10] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[11] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[12] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[13] Metal-insulator phase transition and topology in a three-component system
Shujie Cheng(成书杰) and Xianlong Gao(高先龙). Chin. Phys. B, 2021, 30(1): 010302.
[14] Topological Anderson insulator in two-dimensional non-Hermitian systems
Hongfang Liu(刘宏芳), Zixian Su(苏子贤), Zhi-Qiang Zhang(张智强), Hua Jiang(江华). Chin. Phys. B, 2020, 29(5): 050502.
[15] Ergodicity recovery of random walk in heterogeneous disordered media
Liang Luo(罗亮), Ming Yi(易鸣). Chin. Phys. B, 2020, 29(5): 050503.
No Suggested Reading articles found!