Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 107106    DOI: 10.1088/1674-1056/22/10/107106
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The nonlinear optical properties of a magneto-exciton in a strained Ga0.2In0.8As/GaAs quantum dot

N. R. Senthil Kumara, A. John Peterb, Chang Kyoo Yooc
a Department of Physics, SBM College of Engineering and Technology, Dindigul-624 005, India;
b Department of Physics, Govt. Arts College, Melur-625 106, Madurai, India;
c Center for Environmental Studies/Green Energy Center, Deptartment of Environmental Science and Engineering, College of Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do, 446-701, South Korea
Abstract  The magnetic field-dependent heavy hole excitonic states in a strained Ga0.2In0.8As/GaAs quantum dot are investigated by taking into account the anisotropy, non-parabolicity of the conduction band, and the geometrical confinement. The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material. The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured. The interband optical transition energy as a function of geometrical confinement is computed in the presence of a magnetic field. The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied. The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Ga0.2In0.8As/GaAs quantum dot. Heavy hole excitonic absorption spectra, the changes in refractive index, and the third-order susceptibility of third-order harmonic generation are investigated in the Ga0.2In0.8As/GaAs quantum dot. The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system.
Keywords:  oscillator strength      exciton      quantum dot  
Received:  03 March 2013      Revised:  03 April 2013      Accepted manuscript online: 
PACS:  71.70.Di (Landau levels)  
  72.20.Ht (High-field and nonlinear effects)  
  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.21.La (Quantum dots)  
Corresponding Authors:  A. John Peter     E-mail:  a.john.peter@gmail.com

Cite this article: 

N. R. Senthil Kumar, A. John Peter, Chang Kyoo Yoo The nonlinear optical properties of a magneto-exciton in a strained Ga0.2In0.8As/GaAs quantum dot 2013 Chin. Phys. B 22 107106

[1] Peng J and Li S S 2012 Chin. Phys. Lett. 29 047301
[2] Ramvall P, Tanaka S, Nomura S, Riblet P and Aoyagi Y 1998 Appl. Phys. Lett. 73 1104
[3] Sidor Y, Partoens B and Peeters F M 2005 Phys. Rev. B 71 165323
[4] Cusack M A, Briddon P R and Jaros M 1998 Physica B 253 10
[5] Li M F, Tian X and Zhao Z Y 2004 Chin. Phys. 13 1649
[6] Tan N and Zhang Q Y 2006 Chin. Phys. 15 2165
[7] Ridha P, Li L, Fiore A, Patriarche G, Mexis M and Smowton P M 2007 Appl. Phys. Lett. 91 191123
[8] Li S S, Chang K and Xia J B 2005 Phys. Rev. B 71 155301
[9] Xu X and Feng Y P 2003 J. Phys. Chem. Solids 64 2301
[10] Preisler V, Grange T, Ferreira R, De Vaulchier L A, Guldner Y, Teran F J, Potemski M and Lemaitre A 2009 Eur. Phys. J. B 67 51
[11] Offermans P, Koenraad P M, Wolter J H, Pierz K, Roy M and Maksym P A 2005 Phys. Rev. B 72 165332
[12] Grundmann M, Stier O and Bimberg D 1995 Phys. Rev. B 52 11969
[13] Tangarife E and Duque C A 2010 Appl. Surf. Sci. 256 7234
[14] Stier O, Grundmann M and Bimberg D 1999 Phys. Rev. B 59 5688
[15] Shen W Z 2001 Appl. Phys. Lett. 79 1285
[16] Shen W Z, Tang W G, Shen S C, Wang S M and Andersson T G 1994 Appl. Phys. Lett. 65 2728
[17] Shen W Z, Shen S C, Tang W G, Wang S M and Andersson T G 1995 J. Appl. Phys. 78 1178
[18] Herbert Li E 2000 Physica E 5 215
[19] Singh J 1996 Optoelectronics: An Introduction to Materials and Devices (New Delhi: Tata McGraw Hill)
[20] Nolte D D, Walukiewicz W and Haller E E 1987 Phys. Rev. Lett. 59 501
[21] Adachi S 1992 J. Appl. Phys. 53 8775
[22] Krijn M P C 1991 Semicond. Sci. Technol. 6 27
[23] Frogley M D, Downers J R and Dunstan D J 2000 Phys. Rev. B 62 13612
[24] Duque C A, Porras-Montenegro N, Barticevic Z, Pacheco M and Oliveira L E 2006 J. Phys.: Condens. Matter 18 1877
[25] Bir G L and Pikus E 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: Wiley)
[26] Scriba J,Wixforth A, Kotthaus J P, Bolognesi C R, Nguyen C and Kroemer H 1993 Solid State Commun. 86 633
[27] Revathi M, Chang K Y and John P A 2010 Physica E 43 322
[28] Koga T, Nitta J, Takayanagi H and Datta S 2002 Phys. Rev. Lett. 88 126601
[29] Vladimir A Fonoberov and Alexander A Balandin 2004 Appl. Phys. Lett. 85 5971
[30] de Sousa J S, Leburton J P, Freire V N and da Silva E F 2005 Phys. Rev. B 72 155438
[31] Sali A, Satori H, Fliyou M and Loumrhari H 2002 Phys. Status Solidi (b) 232 209
[32] Takagahara T 1987 Phys. Rev. B 36 9293
[33] Liang S J and Xie W F 2011 Physica B 406 2224
[34] Minimala N S and John P A "Effects Of Magnetic Field and the Builtin Internal Fields on the Absorption Coefficients in a Strained Wurtzite GaNAlGaN Quantum Dot", 2013 AIP Conf. Proc. 1512 1012
[35] Pryor Craig E and Flatté, Michael E 2006 Phys. Rev. Lett. 96 026804
[36] Hendorfer G and Schneider J 1991 Semicond. Sci. Technol. 6 595
[37] Chen Y, Gil B, Lefebvre P and Mathieu H 1988 Phys. Rev. B 37 6429
[38] Xie W F 2009 Commun. Theor. Phys. 52 155
[39] Yu Z G and Srini K 2006 J. Opt. Soc. Am. B 23 2356
[40] Duque C M, Mora-Ramos M E and Duque C A 2011 J. Nanopart. Res. 13 6103
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[12] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[13] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[14] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[15] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
No Suggested Reading articles found!