Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084501    DOI: 10.1088/1674-1056/21/8/084501
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulation study about spin resonant depolarization due to spin–orbit coupling

Lan Jie-Qin (蓝杰钦), Xu Hong-Liang (徐宏亮)
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Abstract  Spin polarization phenomenon in lepton circular accelerators had been known for many years. It gives new approach for physicists to study about spin feature of fundamental particles and dynamics of spin-orbit coupling, such as spin resonances. We use numerical simulation to study the feature of spin under the modulation of orbital motion in electron storage ring. The various cases of depolarization due to spin-orbit coupling through emitting photon and misalignment of magnets in the ring are discussed.
Keywords:  spin polarization and resonant depolarization      spin-orbit coupling      spin flip      numerical simulation  
Accepted manuscript online: 
PACS:  45.10.-b (Computational methods in classical mechanics)  
  21.10.Hw (Spin, parity, and isobaric spin)  
  29.20.D- (Cyclic accelerators and storage rings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875118).
Corresponding Authors:  Lan Jie-Qin, Xu Hong-Liang     E-mail:  lanjq@mail.ustc.edu.cn; hlxu@ustc.edu.cn

Cite this article: 

Lan Jie-Qin (蓝杰钦), Xu Hong-Liang (徐宏亮) Numerical simulation study about spin resonant depolarization due to spin–orbit coupling 2012 Chin. Phys. B 21 084501

[1] Sokolov A A and Ternov I M 1964 Sov. Phys. Dokl. 8 1203
[2] Gay T 1993 Proceedings of the Workshop on Photocathodes for Polarized Electron Sources for Accelerators, Stanford Linear Accelerator Center, Stanford, California September 8-10, 1993, p. 67
[3] Lynn B W 1988 Polarization at LEP, CERN, Geneva, Switzerland September, 1988, p. 24
[4] Arnaudon L, Dehning B, Grosse-Wiesmann P, Jacobsen R, Jonker M, Koutchouk J P, Miles J, Olsen R, Placidi M, Schmidt R, Wenninger J, Assmann R and Blondel A 1995 Z. Phys. C 66 45
[5] Steier C, Byrd J and Kuske P 2000 Proceedings of 7th European Particle Accelerator Conference, Vienna, Austria, June 26-30, 2000, p. 1566
[6] Morozov V S, Chao A W, Krisch A D, Leonova M A, Raymond R S, Sivers D W, Wong V K, Garishvili A, Gebel R, Lehrach A, Lorentz B, Maier R, Prasuhn D, Stochhorst H, Welsch D, Hinterberger F and Kondratenko A M 2009 Phys. Rev. Lett. 102 244801
[7] Leonova M A, Morozov V S, Krisch A D, Raymond R S, Sivers D W, Wong V K, Gebel R, Lehrach A, Lorentz B, Maier R, Prasuhn D, Schnase A, Stockhorst H, Hinterberger F and Ulbrich K 2006 Phys. Rev. ST Accel. Beams 9 051001
[8] Yang J, Dong Q L, Jiang Z T and Zhang J 2011 Acta Phys. Sin. 60 075202 (in Chinese)
[9] Yu Z Q, Xie Q and Xiao Q Q 2010 Acta Phys. Sin. 59 925 (in Chinese)
[10] Derbenev Ya S and Kondratenko A M 1973 Zh. Eksp. Teor. Fiz. 64 1918 [1973 Sov. Phys.-JETP 37 968]
[11] Mane S R 1987 Phys. Rev. A 36 105
[12] Wertz J E and Bolton J R 1972 Electron Spin Resonance: Elementary Theory and Practical Applications (New York: McGraw-Hill)
[13] Thomas L H 1927 Phil. Mag. 3 1
[14] Bargmann V, Michel L and Telegdi V L 1959 Phys. Rev. Lett. 2 435
[15] Lee S Y 1997 Spin Dynamics and Snakes in Synchrotrons (Singapore: World Scientific) p. 26
[16] Hoffstaetter G H and Vogt M 2004 Phys. Rev. E 70 056501
[17] Chao A 1992 Acta Phys. Sin. (Overseas Edition) 1 1013
[18] Chao A W 1981 Nucl. Instrum. Method 180 29
[19] Mane S R 1987 Phys. Rev. A 36 120
[20] Heinemann K and Hoffstätter G H 1996 Phys. Rev. E 54 4240
[21] Chao A 2009 Chin. Phys. C 33 Suppl. II: 115
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[4] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[5] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[6] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[7] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[8] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[9] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[10] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[11] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[12] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[13] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[14] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[15] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
No Suggested Reading articles found!