Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084401    DOI: 10.1088/1674-1056/21/8/084401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical investigation on properties of attack angle for opposing jet thermal protection system

Lu Hai-Bo (陆海波), Liu Wei-Qiang (刘伟强 )
Science and Technology on Scramjet Laboratory, National University of Defense Technology, Changsha 410073, China
Abstract  The three-dimensional Navier-Stokes equation and the k-ε viscous model are used to simulate the attack angle characteristics of a hemisphere nose-tip with an opposing jet thermal protection system in supersonic flow condition. The numerical method is validated by the relevant experiment. The flow field parameters, aerodynamic forces, and surface heat flux distributions for attack angles of 0°, 2°, 5°, 7°, and 10° are obtained. The detailed numerical results show that the cruise attack angle has a great influence on the flow field parameters, aerodynamic force, and surface heat flux distribution of the supersonic vehicle nose-tip with opposing jet thermal protection system. When the attack angle reaches 10°, the heat flux on the windward generatrix is close to the maximal heat flux on the wall surface of the nose-tip without thermal protection system, thus the thermal protection is failure.
Keywords:  properties of attack angle      opposing jet      thermal protection system      supersonic vehicle      computer simulation  
Received:  08 January 2012      Revised:  14 February 2012      Accepted manuscript online: 
PACS:  44.05.+e (Analytical and numerical techniques)  
  47.40.Ki (Supersonic and hypersonic flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 90916018), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200899980006), and the Natural Science Foundation of Hunan Province, China (Grant No. 09JJ3109).
Corresponding Authors:  Lu Hai-Bo     E-mail:  lhbboo@sohu.com

Cite this article: 

Lu Hai-Bo (陆海波), Liu Wei-Qiang (刘伟强 ) Numerical investigation on properties of attack angle for opposing jet thermal protection system 2012 Chin. Phys. B 21 084401

[1] Zhang Y, Zheng L C and Zhang X X 2009 Acta Phys. Sin. 58 5501 (in Chinese)
[2] Zheng K C, Wen Z, Wang Z S, Lou G F, Liu X L and Wu W F 2012 Acta Phys. Sin. 61 014401 (in Chinese)
[3] Huang C L, Feng Y H, Zhang X X, Wang G and Li J 2011 Acta Phys. Sin. 60 114401 (in Chinese)
[4] Clay C L 2004 J. Aircraft 41 978
[5] Glass D E, Merski N R and Glass C E 2002 NASA/TM-2002-211752
[6] Yang Y Z, Yang J L and Fang D N 2008 Appl. Math. Mech. 29 47 (in Chinese)
[7] Warren C H E 1960 J. Fluid Mech. 8 400
[8] Aso S, Hayashi K and Mizoguchi M 2002 AIAA 2002-0646
[9] Hayashi K and Aso S 2003 AIAA 2003-4041
[10] Hayashi K, Aso S and Tani Y 2005 AIAA 2005-188
[11] Tian T and Yan C 2008 J. Beijing Univ. Aeronaut. Astronaut. 34 9 (in Chinese)
[12] Hang W and Wang Z G 2008 J. Solid Rocket Tech. 31 561 (in Chinese)
[13] Tao W Q 2001 Numerical Heat Transfer 2nd edn. (Xi'an: Xi'an Jiaotong University Press) (in Chinese)
[14] Azevedo J L F and Heidi K 1998 AIAA 1998-2629
[15] Baker A J 1980 NASA CP-2166
[16] Middelcoff J F and Thomas P D 1979 AIAA 1979-1462
[17] Chang K S and Choi C J 1986 Int. Comn. Heat Mass Transfer 13 201
[1] First-principles studies on carbon diffusion in tungsten
Chi Song(宋驰), Xiang-Shan Kong(孔祥山), C S Liu(刘长松). Chin. Phys. B, 2019, 28(11): 116106.
[2] Flexibility of nucleic acids: From DNA to RNA
Lei Bao(鲍磊), Xi Zhang(张曦), Lei Jin(金雷), Zhi-Jie Tan(谭志杰). Chin. Phys. B, 2016, 25(1): 018703.
[3] Study on bi-directional pedestrian movement using ant algorithms
Sibel Gokce, Ozhan Kayacan. Chin. Phys. B, 2016, 25(1): 010508.
[4] Design of patterned sapphire substrates for GaN-based light-emitting diodes
Wang Hai-Yan (王海燕), Lin Zhi-Ting (林志霆), Han Jing-Lei (韩晶磊), Zhong Li-Yi (钟立义), Li Guo-Qiang (李国强). Chin. Phys. B, 2015, 24(6): 067103.
[5] Structural modeling of proteins by integrating small-angle x-ray scattering data
Zhang Yong-Hui (张泳辉), Peng Jun-Hui (彭俊辉), Zhang Zhi-Yong (张志勇). Chin. Phys. B, 2015, 24(12): 126101.
[6] Perturbation and variational approach for the equation of state for hard-sphere and Lennard–Jones fluids
S. B. Khasare . Chin. Phys. B, 2012, 21(4): 045103.
[7] A comprehensive approach to an equation of state for hard spheres and Lennard–Jones fluids
S. B. Khasare . Chin. Phys. B, 2011, 20(8): 085101.
[8] Coalescence between Cu57 and Cu58 clusters at a room temperature: molecular dynamics simulations
Zhang Lin (张林), Li Wei (李蔚), Wang Shao-Qing (王绍青). Chin. Phys. B, 2010, 19(7): 073601.
[9] A new hyperchaos system and its circuit simulation by EWB
Zhou Ping(周平), Cao Yu-Xia(曹玉霞), and Cheng Xue-Feng(程雪峰). Chin. Phys. B, 2009, 18(4): 1394-1398.
[10] Zone inhomogeneity with the random asymmetric simple exclusion process in a one-lane system
Xiao Song(肖松), Cai Jiu-Ju(蔡九菊), and Liu Fei(刘飞) . Chin. Phys. B, 2009, 18(11): 4613-4621.
[11] Angular dependence of coercivity of grains in nanocrystalline permanent magnets
Gong Yi-Min(龚依民), Lan Zhi-Huan(蓝志环), Yan Yu(闫羽), Du Xiao-Bo(杜晓波), Wang Wen-Quan(王文全), Wang Xue-Feng(王学凤), Su Feng(苏峰), Lu Lei(卢磊), Zhang Zhi-Sheng(张之胜), Jin Han-Min(金汉民), and Wen Ge-Hui(温戈辉) . Chin. Phys. B, 2008, 17(3): 1130-1134.
[12] Local structure changes of Cu55 cluster during heating
Zhang Lin(张林), Zhang Cai-Bei(张彩碚), and Qi Yang(祁阳). Chin. Phys. B, 2007, 16(1): 77-82.
[13] A study of a main-road cellular automata traffic flow model
Huang Ping-Hua (黄乒花), Kong Ling-Jiang (孔令江), Liu Mu-Ren (刘慕仁). Chin. Phys. B, 2002, 11(7): 678-683.
[14] THE INFLUENCE OF ELECTRON OSCILLATION ON PLASMA TRANSPORT THROUGH A MAGNETIC DUCT
Zhang Tao (张涛), T. K. Kwok (郭达勤), P. K. Chu (朱剑豪), I. G. Brown. Chin. Phys. B, 2001, 10(4): 320-323.
[15] MULTIPLE CLUSTER GROWTH OF ULTRA-THIN FILMS WITH ANISOTROPIC EDGE DIFFUSION
Wang Dai-mu (王戴木), Wu Zi-qin (吴自勤). Chin. Phys. B, 2001, 10(1): 46-51.
No Suggested Reading articles found!