Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 123401    DOI: 10.1088/1674-1056/21/12/123401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Study of the H+HS reaction on a newly built potential energy surface using the quasi-classical trajectory method

Bai Meng-Meng (白孟孟), Ge Mei-Hua (葛美华), Yang Huan (杨欢), Zheng Yu-Jun (郑雨军)
School of Physics, Shandong University, Jinan 250100, China
Abstract  The quasi-classical trajectory (QCT) method is used to study the H+HS reaction on a newly built potential energy surface (PES) of the triplet state of H2S (3A") in a collision energy range of 0-60 kcal/mol. Both scalar properties, such as the reaction probability and the integral cross section (ICS), and the vector properties, such as the angular distribution between the relative velocity vector of the reactant and that of the product, etc., are investigated using the QCT method. It is found that the ICSs obtained by the QCT method and the quantum mechanical (QM) method accord well with each other. In addition, the distribution for the product vibrational states is cold, while that for the product rotational states is hot for both reaction channels in the whole energy range studied here.
Keywords:  quasi-classical trajectory      integral cross section      scalar properties      vector properties  
Received:  16 April 2012      Revised:  09 May 2012      Accepted manuscript online: 
PACS:  34.50.-s (Scattering of atoms and molecules)  
  34.50.Lf (Chemical reactions)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  31.15.ap (Polarizabilities and other atomic and molecular properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21073110), the Independent Innovation Foundation of Shandong University, China (Grant No. 2010GN030), and the National Science Foundation for Postdoctoral Scientists of China (Grant No. 20100481280).
Corresponding Authors:  Yang Huan     E-mail:  h.yang@sdu.edu.cn

Cite this article: 

Bai Meng-Meng (白孟孟), Ge Mei-Hua (葛美华), Yang Huan (杨欢), Zheng Yu-Jun (郑雨军) Study of the H+HS reaction on a newly built potential energy surface using the quasi-classical trajectory method 2012 Chin. Phys. B 21 123401

[1] Lu R F, Zhang P Y, Chu T S, Xie T X and Han K L 2007 J. Chem. Phys. 126 124304
[2] Valero R, McCormack D A and Kroes G J 2004 J. Chem. Phys. 120 4263
[3] Medvedev D M, Gray S K, Goldfield E M, Lakin M J, Troya D and Schatz G C 2004 J. Chem. Phys. 120 1231
[4] Liu S, Xu X and Zhang D H 2011 J. Chem. Phys. 135 141108
[5] Song H W, Lu Y P and Lee S Y 2011 J. Chem. Phys. 135 014305
[6] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[7] Xie T X, Zhang Y, Zhao M Y and Han K L 2003 Phys. Chem. Chem. Phys. 5 2034
[8] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[9] Chu T S and Han K L 2005 J. Phys. Chem. A 109 2050
[10] Yang H, Han K L, Schatz G C, Lee S H, Liu K, Smith S C and Hankel M 2009 Phys. Chem. Chem. Phys. 11 11587
[11] Jorfi M and Honvault P 2011 Phys. Chem. Chem. Phys. 13 8414
[12] Han B R, Yang H, Zheng Y J and Varandas A J C 2010 Chem. Phys. Lett. 493 225
[13] Liang J J, Yang C L, Wang L Z and Zhang Q G 2012 Chem. Phys. 392 180
[14] Xiao J, Yang C L and Wang M S 2012 Chin. Phys. B 21 043101
[15] Li S J, Shi Y, Xie T X and Jin M X 2012 Chin. Phys. B 21 013401
[16] Zhao J and Luo Y 2011 Chin. Phys. B 20 043402
[17] Yu Y J, Xu Q and Xu X W 2011 Chin. Phys. B 20 123402
[18] Maiti B, Schatz G C and Lendvay G 2004 J. Phys. Chem. A 108 8772
[19] Klos J A, Dagdigian P J and Alexander M H 2007 J. Chem. Phys. 127 10
[20] Lü S J, Zhang P Y, Han K L and He G Z 2012 J. Chem. Phys. 136 094308
[21] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[22] Han K L, He G Z and Lou N Q 1993 Chin. Chem. Lett. 4 517
[23] Li R J, Han K L, Li F E, Lü R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[24] Liu S L and Shi Y 2010 Chin. Phys. Lett. 27 123103
[25] Wang T and Yue X F 2011 Chin. Phys. Lett. 28 023101
[26] Ge M H and Zheng Y J 2011 Theor. Chem. Acc. 129 173
[27] Ge M H and Zheng Y J 2011 Chem. Phys. 129 185
[28] Varandas A J C 1993 J. Chem. Phys. 99 1076
[29] Kang L H and Zhu M Y 2010 J. Mol. Struc. Theochem 945 116
[30] Xu W W, Liu X G, Luan S X and Mang Q G 2010 Int. J. Quantum Chem. 110 860
[31] Chen T Y, Zhao N J, Zhang W P and Wang X Q 2011 Cent. Eur. J. Phys. 9 1221
[32] Wu V W K 2011 Phys. Chem. Chem. Phys. 13 9407
[33] Xu Z and Zong F J 2010 J. Mol. Struc. Theochem 960 22
[34] Aoiz F J, Brouard M, Herrero V J, Rabanos V S and Stark K 1996 Chem. Phys. Lett. 264 487
[35] Ge M H and Zheng Y J 2011 Chin. Phys. B 20 083401
[36] Gonzlez M, Sierra J D, Francia R and Says R 1997 J. Phys. Chem. A 101 7513
[1] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[2] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[3] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[4] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[5] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[6] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[7] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[8] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[9] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[10] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[11] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[12] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[13] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[14] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[15] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
No Suggested Reading articles found!