Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100308    DOI: 10.1088/1674-1056/21/10/100308
GENERAL Prev   Next  

Fault tolerant quantum secure direct communication with quantum encryption against collective noise

Huang Weia b, Wen Qiao-Yana, Jia Heng-Yuea, Qin Su-Juana, Gao Feia
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b State Key Laboratory of Integrated Services Network, Xidian University, Xi'an m710071, China
Abstract  We present two novel quantum secure direct communication (QSDC) protocols over different collective-noise channels. Different from the previous QSDC schemes over collective-noise channels, which are all source-encrypting protocols, our two protocols are based on channel-encryption. In both schemes, two authorized users first share a sequence of EPR pairs as their reusable quantum key. Then they use their quantum key to encrypt and decrypt the secret message carried by the decoherence-free states over the collective-noise channel. In theory, the intrinsic efficiencies of both protocols are high since there is no need to consume any entangled states including both the quantum key and the information carriers except the ones used for eavesdropping checks. For checking eavesdropping, the two parties only need to perform two-particle measurements on the decoy states during each round. Finally, we make a security analysis of our two protocols and demonstrate that they are secure.
Keywords:  quantum cryptography      quantum secure direct communication      quantum encryption      collective noise     
Received:  09 March 2012      Published:  01 September 2012
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61170270, 61100203, 60903152, 61003286, and 61121061), the Program for New Century Excellent Talents in University (Grant No. NCET-10-0260), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20090005110010), the Natural Science Foundation of Beijing (Grant Nos. 4112040 and 4122054), the Foundation of Science and Technology on Communication Security Laboratory (Grant No. 9140C110101110 C1104), and the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01, BUPT2011RC0505, 2011PTB-00-29, and 2011RCZJ15).
Corresponding Authors:  Huang Wei     E-mail:  huangwei096505@yahoo.cn

Cite this article: 

Huang Wei, Wen Qiao-Yan, Jia Heng-Yue, Qin Su-Juan, Gao Fei Fault tolerant quantum secure direct communication with quantum encryption against collective noise 2012 Chin. Phys. B 21 100308

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processings, Bangalore, India, p. 175
[2] Ekert A E 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Bennett C H 1992 Phys. Rev. Lett. 68 3121
[5] Gao F, Guo F Z, Wen Q Y and Zhu F C 2006 Phys. Lett. A 349 53
[6] Cabello A 2000 Phys. Rev. A 61 052312
[7] Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 63 036301
[8] Song D 2004 Phys. Rev. A 69 034301
[9] Huang W, Guo F Z, Huang Z, Wen Q Y and Zhu F C 2011 Opt. Commun. 284 536
[10] Guo F Z, Liu T L, Wen Q Y and Zhu F C 2006 Int. J. Quantum Inform. 4 769
[11] Goldenberg L and Vaidman L 1995 Phys. Rev. Lett. 75 1239
[12] Koashi M and Imoto N 1997 Phys. Rev. Lett. 79 2383
[13] Guo G P, Li C F, Shi B S, Li J and Guo G C 2001 Phys. Rev. A 64 042301
[14] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[15] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[16] Tan Y G and Cai Q Y 2010 Eur. Phys. J. D 56 449
[17] Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 64 024302
[18] Karimipour V, Bahraminasab A and Bagherinezhad S 2002 Phys. Rev. A 65 052331
[19] Bagherinezhad S and Karimipour V 2003 Phys. Rev. A 67 044302
[20] Guo F Z, Gao F, Wen Q Y and Zhu F C 2010 Int. J. Quantum Inform. 8 1013
[21] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[22] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 (2004)
[23] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[24] Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Front. Phys. Chin. 2 251
[25] Gao T, Yan F L and Wang Z X 2004 Nuovo Cimento Della Societa Italiana Di Fisica B 119 313
[26] Wójcik A and Felbinger T 2003 Phys. Rev. Lett. 90 157901
[27] Cai Q Y 2003 Phys. Rev. Lett. 91 109801
[28] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[29] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[30] Wang C, Deng F G and Long G L 2005 Phys. Rev. A 71 044305
[31] Li X H, Zhou P, Liang Y J, Li C Y, Zhou H Y and Deng F G 2006 Chin. Phys. Lett. 23 1080
[32] Deng F G, Li X H, Chun Y L, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
[33] Zhang Z J, Man Z X and Li Y 2004 Phys. Lett. A 333 46
[34] Lin S, Wen Q Y, Gao F and Zhu F C 2008 Phys. Rev. A 78 064304
[35] Gao F, Qin S J, Wen Q Y and Zhu F C 2010 Opt. Commun. 283 192
[36] Yang Y G and Wen Q Y 2008 Sci. Chin. G: Phys. Mech. Astron. 51 176
[37] Gu B, Huang Z Y, Xia F and Chen Y L 2011 Commun. Theor. Phys. 56 659
[38] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[39] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
[40] Dong L, Xiu X M, Gao Y and Chi F 2008 Commun. Theor. Phys. 50 359
[41] Zhang Z J, Liu J, Wang D and Shi S H 2007 Phys. Rev. A 75 02630
[42] Yan F L and Zhang X Q 2004 Eur. Phys. J. B 41 75
[43] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338
[44] Yuan H, Song J and He Q 2008 Commun. Theor. Phys. 50 627
[45] Qin S J, Gao F, Wen Q Y and Zhu F C 2010 Commun. Theor. Phys. 53 645
[46] Qin S J, Wen Q Y and Wen L M 2009 Sci. Chin. G: Phys. Mech. Astron. 52 1208
[47] Yang C, Tsai C and Hwang T 2011 Sci. Chin. G: Phys. Mech. Astron. 54 496
[48] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110311
[49] Zhang X L, Zhang Y X and Wei H 2009 Chin. Phys. B 18 435
[50] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
[51] Zanardi P and Rasetti M 1997 Phys. Rev. Lett. 79 3306
[52] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[53] Li X H, Deng F G and Zhou H Y 2007 Appl. Phys. Lett. 91 144101
[54] Walton Z D, Abouraddy A F, Sergienko A V, Saleh B E A and Teich M C 2003 Phys. Rev. Lett. 91 087901
[55] Li X H, Zhao B K, Sheng Y B, Deng F G and Zhou H Y 2009 Int. J. Quantum Inform. 7 1479
[56] Boileau J C, Gottesman D, Laflamme R, Poulin D and Spekkens R W 2004 Phys. Rev. Lett. 92 017901
[57] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[58] Gao F, Guo F Z, Wen Q Y and Zhu F C 2005 Phys. Rev. A 72 066301
[59] Gao F, Qin S J, Wen Q Y and Zhu F C 2005 Lecture Notes in Computer Science, Vol. 3822 December 15-17, 2005, Beijing, China, pp. 302-312
[60] Lo H K and Chau H F 1999 Science 283 2050
[61] Inamori H, Rallan L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6913
[62] Waks E, Zeevi A and Yamamoto Y 2002 Phys. Rev. A 65 052310
[63] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[64] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[1] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[2] Fault tolerant controlled quantum dialogue against collective noise
Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧). Chin. Phys. B, 2020, 29(1): 010304.
[3] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[4] Two-step quantum secure direct communication scheme with frequency coding
Xue-Liang Zhao(赵学亮), Jun-Lin Li(李俊林), Peng-Hao Niu(牛鹏皓), Hong-Yang Ma(马鸿洋), Dong Ruan(阮东). Chin. Phys. B, 2017, 26(3): 030302.
[5] Probabilistic direct counterfactual quantum communication
Sheng Zhang(张盛). Chin. Phys. B, 2017, 26(2): 020304.
[6] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[7] Cryptanalysis of quantum broadcast communication and authentication protocol with a one-time pad
Ya Cao(曹雅), Fei Gao(高飞). Chin. Phys. B, 2016, 25(11): 110305.
[8] Controlled mutual quantum entity authentication using entanglement swapping
Min-Sung Kang, Chang-Ho Hong, Jino Heo, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(9): 090306.
[9] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan, Zhang Shi-Bin, Yan Li-Li, Han Gui-Hua. Chin. Phys. B, 2015, 24(8): 080306.
[10] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei, Wen Qiao-Yan, Liu Bin, Gao Fei. Chin. Phys. B, 2015, 24(7): 070308.
[11] Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state
Chang Yan, Zhang Shi-Bin, Yan Li-Li, Han Gui-Hua. Chin. Phys. B, 2015, 24(5): 050307.
[12] Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
Wang Chao, Liu Jian-Wei, Chen Xiu-Bo, Bi Ya-Gang, Shang Tao. Chin. Phys. B, 2015, 24(4): 040304.
[13] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[14] Quantum broadcast communication and authentication protocol with a quantum one-time pad
Chang Yan, Xu Chun-Xiang, Zhang Shi-Bin, Yan Li-Li. Chin. Phys. B, 2014, 23(1): 010305.
[15] Steganalysis and improvement of a quantum steganography protocol via GHZ4 state
Xu Shu-Jiang, Chen Xiu-Bo, Niu Xin-Xin, Yang Yi-Xian. Chin. Phys. B, 2013, 22(6): 060307.
No Suggested Reading articles found!