Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 080306    DOI: 10.1088/1674-1056/24/8/080306
GENERAL Prev   Next  

Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise

Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华)
College of Information Security Engineering, Chengdu University of Information Technology, Chengdu 610225, China
Abstract  Higher channel capacity and security are difficult to reach in a noisy channel. The loss of photons and the distortion of the qubit state are caused by noise. To solve these problems, in our study, a hyperentangled Bell state is used to design faithful deterministic secure quantum communication and authentication protocol over collective-rotation and collective-dephasing noisy channel, which doubles the channel capacity compared with using an ordinary Bell state as a carrier; a logical hyperentangled Bell state immune to collective-rotation and collective-dephasing noise is constructed. The secret message is divided into several parts to transmit, however the identity strings of Alice and Bob are reused. Unitary operations are not used.
Keywords:  collective noise      hyperentanglement      channel capacity  
Received:  06 January 2015      Revised:  02 February 2015      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province, China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province, China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074).
Corresponding Authors:  Chang Yan     E-mail:  cyttkl@cuit.edu.cn

Cite this article: 

Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华) Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise 2015 Chin. Phys. B 24 080306

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[5] Deng F G and Long G L 2004 Phys. Rev. A 70 012311
[6] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[7] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[8] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[9] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[10] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
[11] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[12] Li X H, Li C Y and Deng F G, et al. 2007 Chin. Phys. 16 2149
[13] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
[14] Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. China: Phys. Mech. Astron. 54 942
[15] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[16] Liu D, Chen J L and Jiang W 2012 Int. J. Theor. Phys. 51 2923
[17] Sun Z W, Du R G and Long D Y 2012 Int. J. Theor. Phys. 51 1946
[18] Ren B C et al. 2013 Eur. Phys. J. D 67 30
[19] Gu B et al. 2013 Int. J. Theor. Phys. 52 4461
[20] Li X H, Deng F G and Zhou H Y 2007 Appl. Phys. Lett. 91 144101
[21] Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
[22] Li X H, Zhao B K, Sheng Y B, Deng F G and Zhou H Y 2009 Int. J. Quantum Inform. 7 1479
[23] Pei C X, Han B B and Zhao N 2009 Acta Photon. Sin. 38 422
[24] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
[25] Li X H 2010 Phys. Rev. A 82 044304
[26] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 042332
[27] Wen K and Long G L 2010 Int. J. Quantum Inform. 8 697
[28] Deng F G, Li X H and Zhou H Y 2011 Quantum Inform. Comput. 11 913
[29] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[30] Yang C W, Tsai C W and Hwang T 2011 Sci. China-Phys. Mech. Astron. 54 496
[31] Huang W, Wen Q Y and Jia H Y 2012 Chin. Phys. B 21 100308
[32] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[33] Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
[34] Niu H C, Ren B C and Wang T J 2012 Int. J. Theor. Phys. 51 2346
[35] Yang C W and Hwang T 2013 Quantum Inform. Process. 12 3495
[36] Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
[37] Li J, Li L Y, Jin H F and Li R F 2013 Phys. Lett. A 377 2729
[38] Xia Y, Fan L L and Hao S Y 2013 Quantum Inform. Process. 12 3553
[39] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[40] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[41] Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
[42] Hou S Y, Sheng Y B, Feng G R and Long G L 2014 Quantum Inform. Process. DOI: 10.1038/srep06857
[43] Zhang R, Zhou S H and Cao C 2014 Sci. China-Phys. Mech. Astron. 57 1511
[44] Ren B C and Long G L 2014 Opt. Express 22 6547
[45] Zhang C M, Song X T, Treeviriyanupab P, Li M, Wang C, Li H W, Yin Z Q, Chen W and Han Z F 2014 Chin. Sci. Bull. 59 2825
[46] Pan J W and Zeilinger A 1998 Phys. Rev. A 57 2208
[47] Walborn S P, Padua S and Monken C H 2003 Phys. Rev. A 68 042313
[48] Barbieri M, Vallone G, Mataloni P and Martini F D 2007 Phys. Rev. A 75 042317
[49] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[50] Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
[51] Zhao R T, Guo Q and Chen L 2012 Chin. Phys. B 21 080303
[52] Wang T J, Song S Y and Long G L 2012 arXiv: 1211.0082v2[quant-ph]
[53] Ren B C, Wei H R, Hua M, Li T and Deng F G 2012 Opt. Express 20 24664
[54] Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
[55] Wang T J and Wang C 2013 J. Opt. Soc. Am. B 30 2689
[56] Ren B C, Wei H R and Deng F G 2013 arXiv: 1303.0056v2[quant-ph]
[57] Graham T M, Barreiro J T, Mohseni M and Kwiat P G 2013 Phys. Rev. Lett. 110 060404
[58] Ren B C, Wei H R and Deng F G 2013 Laser Phys. Lett. 10 095202
[59] Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
[60] Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
[61] Ren B C and Deng F G 2014 Sci. Rep. 4 4623
[62] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[63] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[64] Li C Y, Li X H, Deng F G, Zhou P, Liang Y J and Zhou H Y 2006 Chin. Phys. Lett. 23 2897
[1] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[2] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[3] Fault tolerant controlled quantum dialogue against collective noise
Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧). Chin. Phys. B, 2020, 29(1): 010304.
[4] Parameter allocation of parallel array bistable stochastic resonance and its application in communication systems
Jian Liu(刘健), You-Guo Wang(王友国), Qi-Qing Zhai(翟其清), Jin Liu(刘进). Chin. Phys. B, 2016, 25(10): 100501.
[5] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[6] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞). Chin. Phys. B, 2015, 24(7): 070308.
[7] Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
Wang Chao (王朝), Liu Jian-Wei (刘建伟), Chen Xiu-Bo (陈秀波), Bi Ya-Gang (毕亚港), Shang Tao (尚涛). Chin. Phys. B, 2015, 24(4): 040304.
[8] Quantum secure direct communication network with hyperentanglement
Chang Ho Hong, Jino Heo, Jong In Lim, Hyung Jin Yang. Chin. Phys. B, 2014, 23(9): 090309.
[9] Complete hyperentangled state analysis and generation of multi-particle entanglement based on charge detection
Ji Yan-Qiang (计彦强), Jin Zhao (金钊), Zhu Ai-Dong (朱爱东), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(5): 050306.
[10] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
[11] A two-step quantum secure direct communication protocol with hyperentanglement
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) . Chin. Phys. B, 2011, 20(10): 100309.
[12] Faithful quantum secure direct communication protocol against collective noise
Yang Jing(杨静), Wang Chuan(王川), and Zhang Ru(张茹). Chin. Phys. B, 2010, 19(11): 110306.
[13] Statistical-mechanical analysis of multiuser channel capacity with imperfect channel state information
Wang Hui-Song (汪辉松), Zeng Gui-Hua (曾贵华). Chin. Phys. B, 2008, 17(12): 4451-4457.
No Suggested Reading articles found!