|
|
Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise |
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华) |
College of Information Security Engineering, Chengdu University of Information Technology, Chengdu 610225, China |
|
|
Abstract Higher channel capacity and security are difficult to reach in a noisy channel. The loss of photons and the distortion of the qubit state are caused by noise. To solve these problems, in our study, a hyperentangled Bell state is used to design faithful deterministic secure quantum communication and authentication protocol over collective-rotation and collective-dephasing noisy channel, which doubles the channel capacity compared with using an ordinary Bell state as a carrier; a logical hyperentangled Bell state immune to collective-rotation and collective-dephasing noise is constructed. The secret message is divided into several parts to transmit, however the identity strings of Alice and Bob are reused. Unitary operations are not used.
|
Received: 06 January 2015
Revised: 02 February 2015
Accepted manuscript online:
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61402058), the Science and Technology Support Project of Sichuan Province, China (Grant No. 2013GZX0137), the Fund for Young Persons Project of Sichuan Province, China (Grant No. 12ZB017), and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions, China (Grant No. szjj2014-074). |
Corresponding Authors:
Chang Yan
E-mail: cyttkl@cuit.edu.cn
|
Cite this article:
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华) Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise 2015 Chin. Phys. B 24 080306
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing 175
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[4] |
Deng F G and Long G L 2003 Phys. Rev. A 68 042315
|
[5] |
Deng F G and Long G L 2004 Phys. Rev. A 70 012311
|
[6] |
Hwang W Y 2003 Phys. Rev. Lett. 91 057901
|
[7] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[8] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[9] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[10] |
Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305
|
[11] |
Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
|
[12] |
Li X H, Li C Y and Deng F G, et al. 2007 Chin. Phys. 16 2149
|
[13] |
Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
|
[14] |
Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. China: Phys. Mech. Astron. 54 942
|
[15] |
Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
|
[16] |
Liu D, Chen J L and Jiang W 2012 Int. J. Theor. Phys. 51 2923
|
[17] |
Sun Z W, Du R G and Long D Y 2012 Int. J. Theor. Phys. 51 1946
|
[18] |
Ren B C et al. 2013 Eur. Phys. J. D 67 30
|
[19] |
Gu B et al. 2013 Int. J. Theor. Phys. 52 4461
|
[20] |
Li X H, Deng F G and Zhou H Y 2007 Appl. Phys. Lett. 91 144101
|
[21] |
Li X H, Deng F G and Zhou H Y 2008 Phys. Rev. A 78 022321
|
[22] |
Li X H, Zhao B K, Sheng Y B, Deng F G and Zhou H Y 2009 Int. J. Quantum Inform. 7 1479
|
[23] |
Pei C X, Han B B and Zhao N 2009 Acta Photon. Sin. 38 422
|
[24] |
Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
|
[25] |
Li X H 2010 Phys. Rev. A 82 044304
|
[26] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 042332
|
[27] |
Wen K and Long G L 2010 Int. J. Quantum Inform. 8 697
|
[28] |
Deng F G, Li X H and Zhou H Y 2011 Quantum Inform. Comput. 11 913
|
[29] |
Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
|
[30] |
Yang C W, Tsai C W and Hwang T 2011 Sci. China-Phys. Mech. Astron. 54 496
|
[31] |
Huang W, Wen Q Y and Jia H Y 2012 Chin. Phys. B 21 100308
|
[32] |
Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
|
[33] |
Du F F, Li T, Ren B C, Wei H R and Deng F G 2012 J. Opt. Soc. Am. B 29 1399
|
[34] |
Niu H C, Ren B C and Wang T J 2012 Int. J. Theor. Phys. 51 2346
|
[35] |
Yang C W and Hwang T 2013 Quantum Inform. Process. 12 3495
|
[36] |
Gu B, Huang Y G, Fang X and Chen Y L 2013 Int. J. Theor. Phys. 52 4461
|
[37] |
Li J, Li L Y, Jin H F and Li R F 2013 Phys. Lett. A 377 2729
|
[38] |
Xia Y, Fan L L and Hao S Y 2013 Quantum Inform. Process. 12 3553
|
[39] |
Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
|
[40] |
Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
|
[41] |
Wang T J and Long G L 2013 J. Opt. Soc. Am. B 30 1069
|
[42] |
Hou S Y, Sheng Y B, Feng G R and Long G L 2014 Quantum Inform. Process. DOI: 10.1038/srep06857
|
[43] |
Zhang R, Zhou S H and Cao C 2014 Sci. China-Phys. Mech. Astron. 57 1511
|
[44] |
Ren B C and Long G L 2014 Opt. Express 22 6547
|
[45] |
Zhang C M, Song X T, Treeviriyanupab P, Li M, Wang C, Li H W, Yin Z Q, Chen W and Han Z F 2014 Chin. Sci. Bull. 59 2825
|
[46] |
Pan J W and Zeilinger A 1998 Phys. Rev. A 57 2208
|
[47] |
Walborn S P, Padua S and Monken C H 2003 Phys. Rev. A 68 042313
|
[48] |
Barbieri M, Vallone G, Mataloni P and Martini F D 2007 Phys. Rev. A 75 042317
|
[49] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[50] |
Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305
|
[51] |
Zhao R T, Guo Q and Chen L 2012 Chin. Phys. B 21 080303
|
[52] |
Wang T J, Song S Y and Long G L 2012 arXiv: 1211.0082v2[quant-ph]
|
[53] |
Ren B C, Wei H R, Hua M, Li T and Deng F G 2012 Opt. Express 20 24664
|
[54] |
Wang T J, Lu Y and Long G L 2012 Phys. Rev. A 86 042337
|
[55] |
Wang T J and Wang C 2013 J. Opt. Soc. Am. B 30 2689
|
[56] |
Ren B C, Wei H R and Deng F G 2013 arXiv: 1303.0056v2[quant-ph]
|
[57] |
Graham T M, Barreiro J T, Mohseni M and Kwiat P G 2013 Phys. Rev. Lett. 110 060404
|
[58] |
Ren B C, Wei H R and Deng F G 2013 Laser Phys. Lett. 10 095202
|
[59] |
Ren B C and Deng F G 2013 Laser Phys. Lett. 10 115201
|
[60] |
Ren B C, Du F F and Deng F G 2013 Phys. Rev. A 88 012302
|
[61] |
Ren B C and Deng F G 2014 Sci. Rep. 4 4623
|
[62] |
Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
|
[63] |
Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
|
[64] |
Li C Y, Li X H, Deng F G, Zhou P, Liang Y J and Zhou H Y 2006 Chin. Phys. Lett. 23 2897
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|