Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100307    DOI: 10.1088/1674-1056/21/10/100307
GENERAL Prev   Next  

Experimental demonstration of passive decoy state quantum key distribution

Zhang Yang (张阳), Wang Shuang (王双银), Yin Zhen-Qiang (振强), Chen Wei (陈巍), Liang Wen-Ye (梁文烨), Li Hong-Wei (李宏伟), Guo Guang-Can (郭光灿), Han Zheng-Fu (韩正甫)
Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
Abstract  Passive decoy state quantum key distribution (PDS-QKD) has advantages in high-speed scenarios. We propose a modified model to simulate the PDS-QKD with a weak coherent light source based on Curty's theory [Opt. Lett.34 3238 (2009)]. The modified model can provide better performance in a practical PDS-QKD system. Moreover, we report an experimental demonstration of the PDS-QKD of over 22.0-dB channel loss.
Keywords:  quantum key distribution      passive decoy state method  
Received:  12 April 2012      Revised:  21 June 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the National Basic Research Program of China (Grants Nos. 2011CBA00200 and 2011CB921200), the National Natural Science Foundation of China (Grant Nos. 60921091 and 61101137), and the China Postdoctoral Science Foundation (Grant Nos. 20100480695 and 2012M511419).
Corresponding Authors:  Wang Shuang, Yin Zhen-Qiang     E-mail:  wshuang@ustc.edu.cn; yinzheqi@mail.ustc.edu.cn

Cite this article: 

Zhang Yang (张阳), Wang Shuang (王双银), Yin Zhen-Qiang (振强), Chen Wei (陈巍), Liang Wen-Ye (梁文烨), Li Hong-Wei (李宏伟), Guo Guang-Can (郭光灿), Han Zheng-Fu (韩正甫) Experimental demonstration of passive decoy state quantum key distribution 2012 Chin. Phys. B 21 100307

[1] Bennett C H and Brassard G 1984 Proceedings of the IEEE Int. Conf. on Computers, Systems and Signal Processing Bangalore, India, p. 175
[2] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[3] Scarani V, Bechmann-Pasquinucci H, Cerf M, Dušek N J, Lütkenhaus N and Peev M 2009 Rev. Mod. Phys. 81 1301
[4] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[5] Mo X F, Zhu B, Han Z F, Gui Y Z and Guo G C 2005 Opt. Lett. 30 2632
[6] Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L and G C Guo 2008 Chin. Phys. Lett. 25 3547
[7] Chen W, Han Z F, Zhang T, Wen H, Yin Z Q, Xu F X, Wu Q L, Liu Y, Zhang Y, Mo X F, Gui Y Z, Wei G and Guo G C 2009 IEEE Photon. Technol. Lett. 21 575
[8] Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F and Guo G C 2009 Chin. Sci. Bull. 54 2991
[9] Wang S, Chen W, Yin Z Q, Zhang Y, Zhang T, Li H W, Xu F X, Zhou Z, Yang Y, Huang D J, Zhang L J, Li F Y, Liu D, Wang Y G, Guo G C and Han Z F 2010 Opt. Lett. 35 2454
[10] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Infor. Comput. 4 325
[11] Liu D, Yin Z Q, Wang S, Wang F M, Chen W and Han Z F 2012 Chin. Phys. B 21 060202
[12] Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
[13] Brassard G, Lütkenhaus N, Mor T and Sanders B C 2000 Phys. Rev. Lett. 85 1330
[14] Lütkenhaus N 2000 Phys. Rev. A 61 052304
[15] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[16] Lo H K, Ma X and Chen K 2005 Phys. Rev. Lett. 94 230504
[17] Wang X B 2005 Phys. Rev. Lett. 94 230503
[18] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[19] Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
[20] Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
[21] Ma X and Lo H K 2008 New J. Phys. 10 073018
[22] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[23] Curty M, Moroder T, Ma X and Lütkenhaus N 2009 Opt. Lett. 34 3238
[24] Curty M, Ma X, Qi B and Moroder T 2010 Phys. Rev. A 81 022310
[25] Zhang Y, Chen W, Wang S, Yin Z Q, Xu F X, Wu X W, Dong C H, Li H W, Guo G C and Han Z F 2010 Opt. Lett. 35 3393
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[13] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!