Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010304    DOI: 10.1088/1674-1056/ab5786
GENERAL Prev   Next  

Fault tolerant controlled quantum dialogue against collective noise

Li-Wei Chang(常利伟)1,2, Yu-Qing Zhang(张宇青)1, Xiao-Xiong Tian(田晓雄)1, Yu-Hua Qian(钱宇华)2, Shi-Hui Zheng(郑世慧)3
1 College of Information, Shanxi University of Finance and Economics, Taiyuan 030006, China;
2 Institute of Big Data Science and Industry, Shanxi University, Taiyuan 030006, China;
3 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  Quantum system is inevitably affected by the external environment in the real world. Two controlled quantum dialogue protocols are put forward based on logical χ-type states under collective noise environment. One is against collective-dephasing noise, while the other is against collective-rotation noise. Compared with existing protocols, there exist several outstanding advantages in our proposed protocols:Firstly, the χ-type state is utilized as quantum channels, it possesses better entanglement properties than GHZ state, W state as well as cluster state, which make it difficult to be destroyed by local operations. Secondly, two kinds of logical χ-type states are constructed by us in theory, which can be perfectly immune to the effects of collective noise. Thirdly, the controller can be offline after quantum distribution and permission announcement, without waiting for all the participants to complete the information coding. Fourthly, the security analysis illuminates that our protocols can not only be free from the information leakage, but also resist against the intercept-and-resend attack, the entanglement-and-measure attack, the modification attack, the conspiring attack, and especially the dishonest controller's attacks.
Keywords:  controlled quantum dialogue      collective noise      logical χ-type state      dishonest controller's attacks  
Received:  05 September 2019      Revised:  21 October 2019      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61502048), the Natural Science Foundation of Shanxi Province of China (Grant No. 201801D221159), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province of China (Grant No. 2019L0470), and Youth Research Foundation of Shanxi University of Finance and Economics in Shanxi Province of China (Grant No. QN-2016009).
Corresponding Authors:  Li-Wei Chang     E-mail:  changliwei002@163.com

Cite this article: 

Li-Wei Chang(常利伟), Yu-Qing Zhang(张宇青), Xiao-Xiong Tian(田晓雄), Yu-Hua Qian(钱宇华), Shi-Hui Zheng(郑世慧) Fault tolerant controlled quantum dialogue against collective noise 2020 Chin. Phys. B 29 010304

[1] Grover L K 1997 Phys. Rev. Lett. 79 325
[2] Shor P W 1999 SIAM Rev. 41 303
[3] Zhang H, Guo X X and Xiang S Y 2018 Acta Phys. Sin. 67 204202 (in Chinese)
[4] Zhu K N, Zhou N R, Wang Y Q and Wen X J 2018 Int. J. Theor. Phys. 57 3621
[5] Zhou N R, Zhu K N and Zou X F 2019 Ann. Phys. 531 1800520
[6] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[7] Zhao X L, Li J L, Niu P H, Ma H Y and Ruan D 2017 Chin. Phys. B 26 030302
[8] Zheng X Y and Long Y X 2019 Quantum Inf. Process. 18 129
[9] Du Y T and Bao W S 2018 Chin. Phys. B 27 080304
[10] Yang Y G, Gao S, Li D, Zhou Y H and Shi W M 2019 Quantum Inf. Process. 18 215
[11] Luo G F, Zhou R G and Hu W W 2019 Chin. Phys. B 28 040302
[12] Sisodia M, Verma V, Thapliyal K and Pathak A 2017 Quantum Inf. Process. 16 76
[13] Yang G, Lian B W, Nie M and Jin J 2017 Chin. Phys. B 26 040305
[14] Chang L W, Zheng S H, Gu L Z, Xiao D and Yang Y X 2014 Chin. Phys. B 23 090307
[15] Chang L W, Zheng S H, Gu L Z, Jin L and Yang Y X 2015 Int. J. Theor. Phys. 54 2864
[16] Feng Y Y, Shi R H and Guo Y 2018 Chin. Phys. B 27 020302
[17] Zhang W and Han Z F 2019 Acta Phys. Sin. 68 070301 (in Chinese)
[18] Nguyen B A 2004 Phys. Lett. A 328 6
[19] Xiao M, Cao Y R and Song X L 2017 Chin. Phys. Lett. 34 030302
[20] Gong L H, Li J F and Zhou N R 2018 Laser. Phys. Lett. 15 105204
[21] Ye T Y and Ye C Q 2018 Int. J. Theor. Phys. 57 1440
[22] Qi J M, Xu G, Chen X B, Wang T Y, Cai X Q and Yang Y X 2018 Quantum Inf. Process. 17 247
[23] Cao G and Jiang M 2019 Int. J. Syst. Control Inf. Process. 3 26
[24] Zhang M H, Cao Z W, Peng J Y and Chai G 2019 Eur. Phys. J. D 73 57
[25] Zhang M H, Peng J Y and Cao Z W 2019 Mod. Phys. Lett. B 33 1950033
[26] Man Z X and Xia Y J 2006 Chin. Phys. Lett. 23 1680
[27] Yang Y F, Ye Z Q and Tu C L 2013 Acta Photon. Sin. 42 1305
[28] Ye T Y and Jiang L Z 2013 Chin. Phys. Lett. 30 040305
[29] Liu Z H and Chen H W 2013 Chin. Phys. Lett. 30 079901
[30] Ye T Y and Jiang L Z 2013 Chin. Phys. Lett. 30 079902
[31] Chang C H, Luo Y P, Yang C W and Hwang T 2015 Quantum Inf. Process. 14 3515
[32] Kao S H and Hwang T 2016 Quantum Inf. Process. 15 4313
[33] Kao S H and Hwang T 2017 Quantum Inf. Process. 16 139
[34] Liu Z H and Chen H W 2019 Quantum Inf. Process. 18 98
[35] Yang C W and Hwang T 2013 Quantum Inf. Process. 12 2131
[36] Ye T Y 2015 Sci. Sin. Phys. Mech. Astron. 45 030301
[37] Ye T Y 2015 Quantum Inf. Process. 14 3499
[38] Ye T Y 2015 Sci. Chin.-Phys. Mech. Astron. 58 1
[39] Chang C H, Yang C W, Hzu G R, Hwang T and Kao S H 2016 Quantum Inf. Process. 15 2971
[40] Xiao M and Liu G 2018 Chin. J. Electron. 27 263
[41] Lang Y F 2019 Int. J. Theor. Phys. 58 531
[42] Yang Y G, Gao S, Zhou Y H and Shi W M 2019 Int. J. Theor. Phys. 58 2810
[43] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[44] Shi Y L, Mei F, Yu Y F, Feng X L and Zhang Z M 2012 Quantum Inf. Process. 11 229
[45] Dong L, Xiu X M, Gao Y J and Yi X X 2013 Quantum Inf. Process. 12 1787
[46] Guo Y B, Wang G Z and Jiang N Q 2014 Int. J. Theor. Phys. 53 3135
[47] Leng C L, Zhang Y Q and Ji X 2015 Acta Phys. Sin. 64 184207 (in Chinese)
[48] Liu W, Wang Y B, Jiang Z T and Cao Y Z 2012 Int. J. Theor. Phys. 51 69
[49] Kang S Y, Chen X B and Yang Y X 2014 Quantum Inf. Process. 13 2081
[50] Dong L, Wang J X, Li Q Y, Dong H K, Xiu X M and Gao Y J 2016 Quantum Inf. Process. 15 2955
[51] Xu S J, Chen X B, Wang L H, Ding Q Y and Zhang S H 2016 Commun. Theor. Phys. 65 705
[52] Tan X Q, Zhang X Q and Song T T 2017 Comput. Stand. Interfaces 54 36
[53] Yang X, Bai M Q, Zuo Z C and Mo Z W 2018 Quantum Inf. Process. 17 261
[54] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[1] Faithful deterministic secure quantum communication and authentication protocol based on hyperentanglement against collective noise
Chang Yan (昌燕), Zhang Shi-Bin (张仕斌), Yan Li-Li (闫丽丽), Han Gui-Hua (韩桂华). Chin. Phys. B, 2015, 24(8): 080306.
[2] Multi-user quantum key distribution with collective eavesdropping detection over collective-noise channels
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Liu Bin (刘斌), Gao Fei (高飞). Chin. Phys. B, 2015, 24(7): 070308.
[3] Fault tolerant deterministic secure quantum communication using logical Bell states against collective noise
Wang Chao (王朝), Liu Jian-Wei (刘建伟), Chen Xiu-Bo (陈秀波), Bi Ya-Gang (毕亚港), Shang Tao (尚涛). Chin. Phys. B, 2015, 24(4): 040304.
[4] Fault tolerant quantum secure direct communication with quantum encryption against collective noise
Huang Wei (黄伟), Wen Qiao-Yan (温巧燕), Jia Heng-Yue (贾恒越), Qin Su-Juan (秦素娟), Gao Fei (高飞). Chin. Phys. B, 2012, 21(10): 100308.
[5] Faithful quantum secure direct communication protocol against collective noise
Yang Jing(杨静), Wang Chuan(王川), and Zhang Ru(张茹). Chin. Phys. B, 2010, 19(11): 110306.
No Suggested Reading articles found!