Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 067102    DOI: 10.1088/1674-1056/20/6/067102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Research on high-voltage 4H–SiC P–i–N diode with planar edge junction termination techniques

Zhang Fa-Sheng (张发生)a,  Li Xin-Ran (李欣然)b 
a School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China; b College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Abstract  The planar edge termination techniques of junction termination extension (JTE) and offset field plates and field-limiting rings for the 4H-SiC P-i-N diode were investigated and optimized by using a two-dimensional device simulator ISE-TCAD10.0. By experimental verification, a good consistency between simulation and experiment can be observed. The results show that the reverse breakdown voltage for the 4H-SiC P-i-N diode with optimized JTE edge termination can accomplish near ideal breakdown voltage and much lower leakage current. The breakdown voltage can be near 1650 V, which achieves more than 90 percent of ideal parallel plane junction breakdown voltage and the leakage current density can be near 3×10-5 A/cm2.
Keywords:  silicon carbide      P-i-N diode      junction termination technique      simulation      breakdown voltage  
Received:  10 December 2010      Revised:  26 January 2011      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Kk (Junction diodes)  
  78.40.Fy (Semiconductors)  
Fund: Project supported by the Science and Technology Foundation of Hunan Province of China (Grant No. 2008FJ3102).

Cite this article: 

Zhang Fa-Sheng (张发生), Li Xin-Ran (李欣然) Research on high-voltage 4H–SiC P–i–N diode with planar edge junction termination techniques 2011 Chin. Phys. B 20 067102

[1] Ostling M, Lee H S, Domeij M and Zetterling C M 2006 Proc. Int. Conf. Mixed Design Ics Systems (Gdynia, Poland) p. 34
[2] Tang H Z, Caruth D and Becher D 1999 IEEE Electron. Device Lett.20 245
[3] Saxena V, Su J N and Steckl A J 1999 IEEE Trans. Electron. Devices46 456
[4] Frey W L and Ryssel H 2001 Appl. Surf. Sci.184 413
[5] Wang S G, Yang L A, Zhang Y M, Zhang Y M and Yan J F 2003 Chin. Phys.12 322
[6] Sugawara Y, Takayama D, Asano K, Singh R, Palmour J W and Hayashi T 2001 Proc. Int. Symp. Power Semicond. Devices Ics (Osaka: Japan) p. 27
[7] Baliga J 1996 Power Semiconductor Devices (Boston: PWS Publishing Company)
[8] Yilmaz H 1991 IEEE Trans. Electron Devices38 1666
[9] Bose J V S C, Souza M M D, Narayanan E M S, Spulber O and Sweet M 1999 Proc. Int. Semicond. Conf. CAS'1 (Sinaia: Romania) p. 63
[10] Basavana Goud C 1991 IEEE Trans. Electron. Devices38 1497
[11] Basavana Goud C and Bhat K N 1992 IEEE Trans. Electron. Devices39 1768
[12] Temple V A K and Tantrapom W 1986 IEEE. Trans. Electron. Devices33 1601
[13] Song Q W, Zhang Y M, Zhang Y M, Lü H L, Chen F P and Zheng Q L 2009 Chin. Phys. B18 5474
[14] Fulop W 1967 Solid State Electronics10 39
[15] Hatakeyama T, Watanabe T and Shinohe T 2004 Appl. Phys. Lett.85 23
[16] Konstantinov A O, Wahab Q, Nordell N and Lindefelt U 1997 Appl. Phys. Lett.70 90
[17] Wang S G, Zhang Y, Zhang Y M and Zhang Y M 2010 Chin. Phys. B19 017203
[18] Wang S G, Zhang Y M and Zhang Y M 2003 Chin. Phys.12 89
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[7] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[8] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[9] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[10] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
No Suggested Reading articles found!