Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 123301    DOI: 10.1088/1674-1056/20/12/123301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Low-frequency vibrational modes of glutamine

Wang Wei-Ninga, Zhang Yana, Wang Guob
a Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing 100048, China; b Department of Chemistry, Capital Normal University, Beijing 100048, China
Abstract  High-resolution terahertz absorption and Raman spectra of glutamine in the frequency region 0.2 THz-2.8 THz are obtained by using THz time domain spectroscopy and low-frequency Raman spectroscopy. Based on the experimental and the computational results, the vibration modes corresponding to the terahertz absorption and Raman scatting peaks are assigned and further verified by the theoretical calculations. Spectral investigation of the periodic structure of glutamine based on the sophisticated hybrid density functional B3LYP indicates that the vibrational modes come mainly from the inter-molecular hydrogen bond in this frequency region.
Keywords:  vibrational modes      B3LYP      THz time-domain spectroscopy      Raman scattering      amino acid  
Received:  09 May 2011      Revised:  21 June 2011      Published:  15 December 2011
PACS:  33.20.-t (Molecular spectra)  
  33.20.Vq (Vibration-rotation analysis)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB310408) and the Beijing Natural Science Foundation of China (Grant No. KZ201110028035).

Cite this article: 

Wang Wei-Ning, Wang Guo, Zhang Yan Low-frequency vibrational modes of glutamine 2011 Chin. Phys. B 20 123301

[1] Gervasio F L, Cardini G, Salvi P R and Schettino V 1998 J. Phys. Chem. A 102 2131
[2] Beard M C, Turner G M and Schmutteanmaer C A 2002 J. Phys. Chem. B 106 7146
[3] Strachan C J, Rades T, Newnham D A, Gordon K C, Pepper M and Taday P F 2004 Chem. Phys. Lett. 390 20
[4] Markelz A G, Roitberg A and Heilweil E J 2000 Chem. Phys. Lett. 320 42
[5] Walther M, Fischer B, Schall M, Helm H and Jepsen P U 2000 Chem. Phys. Lett. 332 389
[6] Walther M, Plochocka P, Fischer B, Helm H and Jepsen P U 2002 Biopolymers 67 310
[7] Shen Y C, Upadhya P C and Linfield E H 2004 Vib. Spectr. 35 111
[8] Taday P F, Bradley I V and Arnone D D 2003 J. Biol. Phys. 29 109
[9] Cherkasova O P, Nazarov M M, Shkurinov A P and Fedorov V I 2009 Radiophysics and Quantum Electronics 52 518
[10] Brandt N N, Chikishev A Y, Kargovsky A V, Nazarov M M, Parashchuk O D, Sapozhnikov D A, Smirnova I N, Shkurinov A P and Sumbatyan N V 2008 Vib. Spectr. 47 53
[11] Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I and Alfano R R 2004 J. Biophys. 86 1649
[12] Yamaguchi M, Miyamaru F, Yamamoto K, Tani M and Hangyo M 2005 Appl. Phys. Lett. 86 053903
[13] Korter T M, Balu R, Campbell M B, Beard M C, Gregurick S K and Heilweil E J 2006 Chem. Phys. Lett. 418 65
[14] Ueno Y, Rungsawang R, Tomita I and Ajito K 2006 Anal. Chem. 78 5424
[15] Nagai N and Katsurazawa Y 2006 Biopolymers 85 207
[16] Yan Z, Hou D, Huang P, Cao B, Zhang G and Zhou Z 2008 Meas. Sci. Technol. 19 015602
[17] Wang W N 2009 Acta Phys. Sin. 58 7640 (in Chinese)
[18] Ma S H, Shi Y L, Xu X L, Yan W, Yang Y P and Wang L 2006 Acta Phys. Sin. 55 4091 (in Chinese)
[19] Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J and Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese)
[20] Tian L, Zhou Q L, Zhao K, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q and Zhang C L 2011 Chin. Phys. B 20 010703
[21] Siegrist K, Bucher C R, Mandelbaum I, Walker A R H, Balu R, Gregurick S K and Plusquellic D F 2006 J. Am. Chem. Soc. 128 5764
[22] Allis D G, Prokhorova D A and Korter T M 2006 J. Phys. Chem. A 110 1951
[23] Saito S, Inerbaev T M, Mizuseki H, Igarashi N, Note R and Kawazoe Y 2006 Chem. Phys. Lett. 423 439
[24] Saito S, Inerbaev T M, Mizuseki H, Igarashi N, Note R and Kawazoe Y 2006 Chem. Phys. Lett. 432 157
[25] Jepsen P U and Clark S J 2007 Chem. Phys. Lett. 442 275
[26] Hermet P, Bantignies J L, Maurin D and Sauvajol J L 2007 Chem. Phys. Lett. 445 47
[27] Pascale F, Zicovich-Wilson C M, Lopez F, Civalleri B, Orlando R and Dovesi R 2004 J. Comput. Chem. 25 888
[28] Zicovich-Wilson C M, Pascale F, Roetti C, Saunders V R, Orlando R and Dovesi R 2004 J. Comput. Chem. 25 1873
[29] Chou K C 1980 Biophys. J. 45 881
[30] Zicovich-Wilson C M, Dovesi R and Saunders V R 2001 J. Chem. Phys. 115 9708
[31] Becke A D 1993 J. Chem. Phys. 98 5648
[32] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[33] Dovesi R, Saunders V R, Roetti C, Orlando R, Zicovich-Wilson C M, Pascale F, Civalleri B, Doll K, Harrison N M, Bush I J, D'Arco Ph and Llunell M 2007 CRYSTAL06 User's Manual University of Torino, Italy
[34] Shen Y C, Upadhya P C, Linfield E H and Davies A G 2004 Vib. Spectro. 35 111
[35] Ugliengo P, Viterbo D and Chiari G 1993 Z. Kristallogr. 207 9
[36] Ugliengo P 2006 MOLDRAW: A Program to Display and Manipulate Molecular and Crystal Structures Torino, available on the web at http://www.moldraw.unito.it
[1] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[2] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[3] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[4] Forward-headed structure change of acetic acid-water binary system by stimulated Raman scattering
Zhe Liu(刘喆), Bo Yang(杨博), Hong-Liang Zhao(赵洪亮), Zhan-Long Li(李占龙), Zhi-Wei Men(门志伟), Xiao-Feng Wang(王晓峰), Ning Wang(王宁), Xian-Wen Cao(曹献文), Sheng-Han Wang(汪胜晗), Cheng-Lin Sun(孙成林). Chin. Phys. B, 2019, 28(9): 094206.
[5] Characterization of structural transitions and lattice dynamics of hybrid organic-inorganic perovskite CH3NH3PbI3
Feng Jin(金峰), Jian-Ting Ji(籍建葶), Chao Xie(谢超), Yi-Meng Wang(王艺朦), Shu-Na He(贺淑娜), Lei Zhang(张磊), Zhao-Rong Yang(杨昭荣), Feng Yan(严锋), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(7): 076102.
[6] Raman scattering study of magnetic layered MPS3 crystals (M=Mn, Fe, Ni)
Yi-Meng Wang(王艺朦), Jian-Feng Zhang(张建丰), Cheng-He Li(李承贺), Xiao-Li Ma(马肖莉), Jian-Ting Ji(籍建葶), Feng Jin(金峰), He-Chang Lei(雷和畅), Kai Liu(刘凯), Wei-Lu Zhang(张玮璐), Qing-Ming Zhang(张清明). Chin. Phys. B, 2019, 28(5): 056301.
[7] Research on co-propagation of QKD and classical communication by reducing the classical optical power
Ru-Shi He(何如适), Mu-Sheng Jiang(江木生), Yang Wang(汪洋), Ya-Hui Gan(甘亚辉), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(4): 040303.
[8] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[9] Raman scattering under extreme conditions
Feng Jin(金峰), Yang Yang(杨洋), An-Min Zhang(张安民), Jian-Ting Ji(籍建葶), Qing-Ming Zhang(张清明). Chin. Phys. B, 2018, 27(7): 077801.
[10] Highly sensitive and stable SERS probes of alternately deposited Ag and Au layers on 3D SiO2 nanogrids for detection of trace mercury ions
Yi Tian(田毅), Han-Fu Wang(王汉夫), Lan-Qin Yan(闫兰琴), Xian-Feng Zhang(张先锋), Attia Falak, Pei-Pei Chen(陈佩佩), Feng-Liang Dong(董凤良), Lian-Feng Sun(孙连峰), Wei-Guo Chu(禇卫国). Chin. Phys. B, 2018, 27(7): 077406.
[11] Quantitative and sensitive detection of prohibited fish drugs by surface-enhanced Raman scattering
Shi-Chao Lin(林世超), Xin Zhang(张鑫), Wei-Chen Zhao(赵伟臣), Zhao-Yang Chen(陈朝阳), Pan Du(杜攀), Yong-Mei Zhao(赵永梅), Zheng-Long Wu(吴正龙), Hai-Jun Xu(许海军). Chin. Phys. B, 2018, 27(2): 028707.
[12] Scanning the energy dissipation process of energetic materials based on excited state relaxation and vibration-vibration coupling
Wen-Yan Wang(王文岩), Ning Sui(隋宁), Li-Quan Zhang(张里荃), Ying-Hui Wang(王英惠), Lin Wang(王琳), Quan Wang(王权), Jiao Wang(王娇), Zhi-Hui Kang(康智慧), Yan-Qiang Yang(杨延强), Qiang Zhou(周强), Han-Zhuang Zhang(张汉壮). Chin. Phys. B, 2018, 27(10): 104205.
[13] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[14] Direct observation of melted Mott state evidenced from Raman scattering in 1T-TaS2 single crystal
Qing Hu(胡庆), Cong Yin(尹聪), Leilei Zhang(张雷雷), Li Lei(雷力), Zhengshang Wang(王正上), Zhiyu Chen(陈志禹), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(1): 017104.
[15] Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering
Feng Yang(杨丰), Yinglu Ji(纪英露), Xiao Zhang(张霄), Qingxia Fan(范庆霞), Nan Zhang(张楠), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Qiang Zhang(张强), Yanchun Wang(王艳春), Xiaochun Wu(吴晓春), Junjie Li(李俊杰), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(7): 078801.
No Suggested Reading articles found!