Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100311    DOI: 10.1088/1674-1056/20/10/100311
GENERAL Prev   Next  

Measurement-induced disturbance and nonequilibrium thermal entanglement in a qutrit–qubit mixed spin XXZ model

Chen Li(陈丽)a), Shao Xiao-Qiang(邵晓强)a), and Zhang Shou(张寿)a)b)
a Centre for the Condensed-Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  We investigate the dynamics of nonequilibrium thermal quantum correlation of a qutrit-qubit mixed spin system coupled to two bosonic reservoirs at different temperatures using measurement-induced disturbance. The effects of initial states of the spins and temperatures of the reservoirs on measurement-induced disturbance and entanglement are discussed. The results demonstrate that measurement-induced disturbance is more robust than entanglement against the influence of both these factors and there is no sudden death phenomenon for measurement-induced disturbance. The dependences of steady-state measurement-induced disturbance and entanglement on coupling constant and anisotropy parameter are also studied. Steady-state entanglement vanishes for a ferromagnetic qutrit-qubit model, while steady-state measurement-induced disturbance exists for both the antiferromagnetic and ferromagnetic cases. Appropriately modulating the coupling constant and anisotropy parameter can strengthen quantum correlation.
Keywords:  measurement-induced disturbance      entanglement  
Received:  16 March 2011      Revised:  27 May 2011      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61068001 and 11064016).

Cite this article: 

Chen Li(陈丽), Shao Xiao-Qiang(邵晓强), and Zhang Shou(张寿) Measurement-induced disturbance and nonequilibrium thermal entanglement in a qutrit–qubit mixed spin XXZ model 2011 Chin. Phys. B 20 100311

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Tao Y J, Tian D P, Hu M L and Qin M 2008 Chin. Phys. B 17 624
[3] Liang M L and Yuan B 2010 Chin. Phys. B 19 094206
[4] Zheng S B 2010 Chin. Phys. B 19 064204
[5] Horodecki M, Horodecki P, Horodecki R, Oppenheim J, Sen A, Sen U and Synak-Radtke B 2005 Phys. Rev. A 71 062307
[6] Niset J and Cerf N J 2006 Phys. Rev. A 74 052103
[7] Ahn J, Weinacht T C and Bucksbaum P H 2000 Science 287 463
[8] Braunstein S L, Caves C M, Jozsa R, Linden N, Popescu S and Schack R 1999 Phys. Rev. Lett. 83 1054
[9] Meyer D A 2000 Phys. Rev. Lett. 85 2014
[10] Knill E and Laflamme R 1998 Phys. Rev. Lett. 81 5672
[11] Lanyon B P, Barbicri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[12] Ollivier H and Zurek W H 2002 Phys. Rev. Lett. 88 017901
[13] Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
[14] Vedral V 2003 Phys. Rev. Lett. 90 050401
[15] Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
[16] Luo S L 2008 Phys. Rev. A 77 022301
[17] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[18] Luo S L 2008 Phys. Rev. A 77 042303
[29] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[20] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 81 014101
[21] Lu X M, Ma J, Xi Z and Wang X 2011 Phys. Rev. A 83 012327
[22] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[23] Ali M 2010 J. Phys. A: Math. Theor. 43 495303
[24] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[25] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[26] Zhang G F, Jiang Z T and Abliz A 2011 Ann. Phys. 326 867
[27] Zhang G F, Hou Y C and Ji A L 2011 Solid State Commun. 151 790
[28] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[29] Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
[30] Bose S 2003 Phys. Rev. Lett. 91 207901
[31] Kane B E 1998 Nature 393 133
[32] Imamoglu A, Knill E, Tian L and Zoller P 2003 Phys. Rev. Lett. 91 017402
[33] van Koningsbruggen P J, Kahn O, Nakatani K, Pei Y, Renard J P, Drillon M and Legoll P 1990 Inorg. Chem. 29 3325
[34] Goldman M 2001 J. Magn. Reson. 149 160
[35] Plenio M B 2005 Phys. Rev. Lett. 95 090503
[36] .Zyczkowski K, Horodecki P, Sanpera A and Lewenstein M 1998 Phys. Rev. A 58 883
[37] Sinaysky I, Petruccione F and Burgarth D 2008 Phys. Rev. A 78 062301
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[15] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
No Suggested Reading articles found!