Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010305    DOI: 10.1088/1674-1056/20/1/010305
GENERAL Prev   Next  

Einstein–Podolsky–Rosen entanglement in time-dependent broadband pumping frequency non-degenerate optical parametric amplifier

Zhao Chao-Ying(赵超樱)a)b) and Tan Wei-Han(谭维翰)c)
a The College of Science, Hangzhou Dianzi University, Hangzhou 310018, China; b State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, Chinac Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  This paper investigates quantum fluctuations characteristic of time-dependent broadband pumping frequency non-degenerate optical parametric amplifier for below and above threshold regions. It finds that a high squeezing and entanglement can be achieved.
Keywords:  time dependent broadband pumping      entanglement      frequency non-degenerate optical parametric amplifier  
Received:  07 April 2010      Revised:  14 June 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
Fund: Project supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, China (Grant No. 200904).

Cite this article: 

Zhao Chao-Ying(赵超樱) and Tan Wei-Han(谭维翰) Einstein–Podolsky–Rosen entanglement in time-dependent broadband pumping frequency non-degenerate optical parametric amplifier 2011 Chin. Phys. B 20 010305

[1] Stappaerts E A, Komine H and Long Jr W H 1980 Opt. Lett. 5 4
[2] H'etet G, Gl"ockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H A and Lam P K 2007 J. Phys. B: At. Mol. Opt. Phys. 40 221
[3] Golubeva T, Ivanov D and Golubev Yu 2008 Phys. Rev. A 77 052316
[4] Braunstein S L and Loock P V 2005 Rev. Mod. Phys. 77 513
[5] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[6] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D and Peng K C 2002 Phys. Rev. Lett. 88 047904
[7] Zhang J, Xie C D and Peng K C 2003 Europhys. Lett. 61 579
[8] Hirano T, Kotani K, Ishibashi T, Okude S and Kuwamoto T 2005 Opt. Lett. 30 1722
[9] Takeno Y, Yukawa M, Yonezawa H and Furusawa A 2007 Opt. Express 15 4321
[10] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goβler S, Danzmann K and Schnabel R 2008 Phys. Rev. Lett. 100 033602
[11] Kim C and Kumar P 1994 wxPhys. Rev. Lett.73 1605
[12] Werner M J, Raymer M G, Beck M and Drummond P D 1995 Phys. Rev. A 52 4202
[13] Yu C X, Haus H A and Ippen E P 2001 Opt. Lett. 26 669
[14] Wenger J, Tualle-Brouri R and Grangier P 2004 Opt. Lett. 29 1267
[15] Eto Y, Tajima T, Zhang Y and Hirano T 2007 Opt. Lett. 32 1698
[16] Zhao C Y and Tan W H 2006 J. Mod. Opt. 53 1965
[17] Zhao C Y and Tan W H 2006 J.Opt. Soc. Am. B 23 2174
[18] Zhao C Y and Tan W H 2007 J. Mod. Opt. 54 97
[19] Zhao C Y and Tan W H 2007 Chin. Phys. 16 644
[20] Zhao C Y and Tan W H 2009 Chin. Phys. B 18 4143
[21] Walls D F and Milburn G J 1994 Quantum Optics (2nd ed.) (New York: Springer)
[22] Reid M D and Drummond P D 1989 Phys. Rev. A 40 4493
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!