Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 086106    DOI: 10.1088/1674-1056/19/8/086106
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of high temperature annealing on strain and band gap of GaN nanoparticles

Xiao Hong-Di(肖洪地)a)† , Mao Hong-Zhi(毛宏志)b), Lin Zhao-Jun(林兆军)a), and Ma Hong-Lei(马洪磊)a)
a School of Physics, Shandong University, Jinan 250100, China; b School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
Abstract  Black-coloured GaN nanoparticles with an average grain size of 50 nm have been obtained by annealing GaN nanoparticles under flowing nitrogen at 1200 $^\circ$C for 30 min. XRD measurement result indicates an increase in the lattice parameter of the GaN nanoparticles annealed at 1200 $^\circ$C, and HRTEM image shows that the increase cannot be ascribed to other ions in the interstitial positions. If the as-synthesised GaN nanoparticles at 950 $^\circ$C are regarded as standard, the thermal expansion changes nonlinearly with temperature and is anisotropic; the expansion below 1000 $^\circ$C is smaller than that above 1000 $^\circ$C. This study provides an experimental demonstration for selecting the proper annealing temperature of GaN. In addition, a large blueshift in optical bandgap of the annealed GaN nanoparticles at 1200 $^\circ$C is observed, which can be ascribed to the dominant transitions from the C($\Gamma$7) with the peak energy at 3.532 eV.
Keywords:  GaN nanoparticles      thermal expansion      strain      blue shift      bandgap  
Received:  23 March 2009      Revised:  01 February 2010      Accepted manuscript online: 
PACS:  61.72.Cc (Kinetics of defect formation and annealing)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  61.72.J- (Point defects and defect clusters)  
  65.80.+n  
  71.20.Nr (Semiconductor compounds)  
  78.55.Cr (III-V semiconductors)  
Fund: Project supported by the Excellent Young Scientist Awarding Fund of Shandong Province, China (Grant No. 2008BS04005), the China Postdoctoral Science Foundation (Grant No. 20080441141), and the Postdoctoral Innovation Program Special Fund of Shandong Province, China (Grant No. 200803054).

Cite this article: 

Xiao Hong-Di(肖洪地), Mao Hong-Zhi(毛宏志), Lin Zhao-Jun(林兆军), and Ma Hong-Lei(马洪磊) Effect of high temperature annealing on strain and band gap of GaN nanoparticles 2010 Chin. Phys. B 19 086106

[1] Chae S W, Yoon S K, Kwak J S, Park Y H and Kim T G 2006 J. Vac. Sci. Technol. A 24 634
[2] Knox-Davies E C, Henley S J, Shannon J M and Silya S R P 2006 J. Appl. Phys. 99 036108
[3] Kim D J, Park S E, Kim H J, Ryu J K and Pak S S 2003 Jpn. J. Appl. Phys. Part 1 42 7349
[4] Wang L S, Chua S J and Sun W H 2002 Mater. Res. Soc. Sym. Pro. 693 323
[5] Zolper J C, Crawford M, Howard A J, Rammer J and Hersee S D 1996 Appl. Phys. Lett. 68 200
[6] Siegle H, Kaczmarczyk G, Filippidis L, Litvinchuk A P, Hoffmann A and Thomsen C 1997 Phys. Rev. B 55 7000
[7] Xiao H D, Ma H L, Lin Z J, Ma J, Zong F J and Zhang X J 2007 Mater. Chem. Phys. 106 5
[8] Xu F, Xie Y, Zhang X, Zhang S Y, Liu X M, Xi W and Tian X B 2004 Adv. Funct. Mater. 14 464
[9] Zhao D G, Xu S J, Xie M H, Tong S Y and Yang H 2003 Appl. Phys. Lett. 83 677
[10] Figge S, Kroncke H, Hommel D and Epelbaum B 2009 Appl. Phys. Lett. 94 101915
[11] Leszzynski M, Prystawko P, Suski T, Lucznik B, Domagala J, Bak-Misiuk J, Stonert A, Turos A, Langer R and Barski A 1999 J. Alloy Compd. 286 271
[12] Xu D Q, Zhang Y M, Zhang Y M, Li P X and Wang C 2009 Chin. Phys. B 18 1637
[13] Kyutt R N, Sobolev N A, Mosina G N and Shek E I 2006 Phys. Solid State 48 1672
[14] Pipeleers B, Hogg S M and Vantomme A 2005 J. Appl. Phys. 98 123504
[15] Bchetnia A, Kemis I, Toure A, Fathallah W, Boufaden T and El Jani B 2008 Semicond. Sci. Tech. 23 125025
[16] Xiao H D, Ma H L, Xue C S, Hu W R, Ma J, Zong F J, Zhang X J and Ji F 2005 Diam. Relat. Mater. 14 1730
[17] Xue S B, Zhuang H Z, Xue C S, Hu L J, Li B L and Zhang S Y 2007 Chin. Phys. 16 1405
[18] Qin L X, Xue C S, Yang Z Z, Chen J H and Li H 2008 Chin. Phys. B 17 2180
[19] Ding S, Liu P, Zheng J G, Yang X F, Zhao F L, Chen J, Wu H and Wu M M 2007 Adv. Funct. Mater. 17 1879
[20] Koblm"uller G, Brown J, Averbeck R, Riechert H, Pongratz P, Petroff P M and Speck J S 2005 Phys. Stat. Sol. C 2 2178
[21] Iwanaga H, Kunishige A and Takeuchi S 2000 J. Mater. Sci. 35 2451
[22] Varshni Y P 1967 Physics 34 149
[23] Jain S C, Willander M, Narayan J and Van Overstraeten R 2000 J. Appl. Lett. 87 965
[24] Gil B 1988 Group III Nitride Semiconductor Compounds (Oxford: Clarendon) p. 307
[25] Chen G D, Smith M, Lin J Y, Jiang H X, Wei S H, Khan M A and Sun C J 1996 Appl. Phys. Lett. 68 2784
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Magneto-volume effect in FenTi13-n clusters during thermal expansion
Jian Huang(黄建), Yanyan Jiang(蒋妍彦), Zhichao Li(李志超), Di Zhang(张迪), Junping Qian(钱俊平), and Hui Li(李辉). Chin. Phys. B, 2023, 32(4): 046501.
[6] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[7] Response characteristics of drill-string guided wave in downhole acoustic telemetry
Ao-Song Zhao(赵傲耸), Hao Chen(陈浩), Xiao He(何晓), Xiu-Ming Wang(王秀明), and Xue-Shen Cao(曹雪砷). Chin. Phys. B, 2023, 32(3): 034301.
[8] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[9] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[10] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[11] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[12] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[13] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[14] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[15] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
No Suggested Reading articles found!