Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030308    DOI: 10.1088/1674-1056/19/3/030308
GENERAL Prev   Next  

Measurements of a periodically driving qubit using a quantum point contact

Wang Hai-Xia (王海霞), Yin Wen(殷雯), and Wang Fang-Wei(王芳卫)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Using the method developed by Gurvitz [1996 Phys. Rev. B 53 15932], we obtained the Bloch-type rate equations describing the entire system of a periodically driving qubit monitored by a quantum point contact detector. The results demonstrate that the isolated qubit can be kept in its initial state with a large driving frequency due to more difficult electron tunneling in qubit, and this initial state can always be measured at a small measurement-induced decoherence rate during a short time.
Keywords:  periodically driving qubit      measurement      detector current      driving frequency  
Received:  02 June 2009      Revised:  24 August 2009      Accepted manuscript online: 
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
  73.40.Gk (Tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10775091).

Cite this article: 

Wang Hai-Xia (王海霞), Yin Wen(殷雯), and Wang Fang-Wei(王芳卫) Measurements of a periodically driving qubit using a quantum point contact 2010 Chin. Phys. B 19 030308

[1] Elzerman M, Hanson R, van Beveren L H W, Witkamp B, Vandersypen L M Kand Kouwenhoven L P 2004 Nature (London) 430 431
[2] Gustavsson S, Leturcq R, Schleser R, Ihn T, Studerus P and Ensslin K 2006 Phys. Rev. Lett. 96 076605
[3] Aono Tomosuke 2008 Phys. Rev. B 77 081303
[4] Gustavsson S, Leturcq R, Studer M, Ihn T and Ensslin K 2008 Nano Letters 8 2547
[5] Li X Q, Zhang W K, Cui P, Shao J S, Ma Z S and Yan Y J 2004 Phys. Rev. B 69 085315
[6] Hu X N and Li X Q 2006 Phys. Rev. B 73 035320
[7] Wallin D, Fuhrer A, Froberg L E, Samuelson L and Xu H Q 2007 Appl. Phys. Lett. 90 172112
[8] Pelling S, Davis R, Kulik L, Tzalenchuk A, Kubatkin S, Ueda T, Komiyama S and Antonov V N 2008 Appl. Phys. Lett. 93 073501
[9] Gurvitz S A and Berman G P 2005 Phys. Rev. B 72 073303
[10] Gurvitz S A, Fedichkin L, Mozyrsky D and Berman G P 2003 Phys. Rev.Lett. 91 066801
[11] Gurvitz S A 1996 Phys. Rev. B 53 15932
[12] Yin W, Lai Y Z, Yan Q W and Liang J Q 2003 Acta Phys. Sin. 52 1862 (in Chinese)
[13] Wang H X and Yin W 2008 Acta Phys. Sin. 57 2669 (in Chinese)
[14] Gurvitz S A 2000 Phys. Rev. Lett. 85 812
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[3] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[6] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[7] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[8] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[9] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[10] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[11] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[12] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[13] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[14] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[15] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
No Suggested Reading articles found!