Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 117504    DOI: 10.1088/1674-1056/19/11/117504
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetostriction of Fe81Ga19 oriented crystals

Wang Zhi-Bin(王智彬), Liu Jing-Hua(刘敬华), and Jiang Cheng-Bao(蒋成保)
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  The effect of the orientation on the magnetostriction in Fe81Ga19 alloy has been investigated experimentally and theoretically. The Fe81Ga19 [001] and [110] oriented crystals were prepared and the magnetostriction was measured under different pre-stress. The saturation magnetostriction of the [001] oriented crystal increases from 170×10-6 to 330×10-6 under the pre-stress from 0 to 50 MPa. The [110] oriented crystal has a saturation magnetostriction from 20×10-6 to 140×10-6 with the compressive pre-stress from 0 to 40 MPa. The magnetostriction of [001] and [110] oriented crystals has been simulated based on the phenomenological theory. The domain rotation path has been determined and the resultant magnetostriction calculated under different pre-stress. The experimental and simulated results both show that the [001] oriented crystal exhibits better magnetostriction than [110] oriented crystal. The enhancement of the saturation magnetostriction by the compressive pre-stress in the [110] oriented crystal is higher than that in the [001] oriented crystal.
Keywords:  magnetostriction      orientation      Fe81Ga19 alloy      simulation  
Received:  17 December 2009      Revised:  02 June 2010      Accepted manuscript online: 
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
  81.10.Fq (Growth from melts; zone melting and refining)  
Fund: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50531010), National Science Fund for Distinguished Young Scholars of China (Grant No. 50925101), Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 50921003).

Cite this article: 

Wang Zhi-Bin(王智彬), Liu Jing-Hua(刘敬华), and Jiang Cheng-Bao(蒋成保) Magnetostriction of Fe81Ga19 oriented crystals 2010 Chin. Phys. B 19 117504

[1] Teter J P, Mahoney K, Al-Jiboory M, Lord D G and McMasters O D 1991 wxJ. Appl. Phys.69 5768
[2] Verhoeven J D, Ostenson J E, Gibson E D and McMasters O D 1989 wxJ. Appl. Phys.66 772
[3] Teter J P, Clark A E and McMasters O D 1987 wxJ. Appl. Phys.61 3787
[4] Pei Y M, Fang D N and Feng X 2007 wxAppl. Phys. Lett.90 182505
[5] Zheng X P, Zhang P F, Li F S and Hao Y 2009 wxActa Phys. Sin.58 5768 (in Chinese)
[6] Zheng X P, Zhang P F, Fan D W, Li F S and Hao Y 2006 wxActa Phys. Sin.55 879 (in Chinese)
[7] Li Y X, Qu J P, Wang B W, Xu G Z, Yu H, Yang Q X, Yan W L, Wu G H, Wang J H, Tang C C and Zhan W S 1999 wxActa Phys. Sin.48 S257 (in Chinese)
[8] Guruswamy S, Srisukhumbowornchai N, Clark A E, Restoff J B and Wun-Fogle M 2000 wxScr. Mater.43 239
[9] Srisukhumbowornchai N and Guruswamy S 2001 wxJ. Appl. Phys.90 5680
[10] Cullen J R, Clark A E, Wun-Fogle M, Restorff J B and Lograsso T A 2001 wxJ. Magn. Magn. Mater.226-230 948
[11] Clark A E, Wun-Fogle M, Restorff J B, Lograsso T A and Cullen J R 2001 wxIEEE Trans. Magn.37 2678
[12] Clark A E, Hathaway K B, Wun-Fogle M, Restorff J B, Lograsso T A, Keppens V M, Petculescu G and Taylor R A 2003 wxJ. Appl. Phys.93 8621
[13] Wang B W, Li S Y, Zhou Y, Huang W M and Cao S Y 2008 wxJ. Magn. Magn. Mater.320 769
[14] Na S M, Suh S J and Flatau A B 2007, wxJ. Magn. Magn. Mater.310 2630
[15] Dunlap R A, McGraw J D and Farrell S P 2006 wxJ. Magn. Magn. Mater.305 315
[16] Clark A E, Restorff J B, Wun-Fogle M, Hathaway K B, Lograsso T A, Huang M and Summers E 2007 wxJ. Appl. Phys.101 09C507
[17] Khmelevska T, Khmelevskyi S and Mohn P 2008 wxJ. Appl. Phys.103 073911
[18] Zheng L, Jiang C B, Shang J X and Xu H B 2009 wxChin. Phys. B18 1647
[19] Liu G D, Li Y X, Hu H N, Qu J P, Liu Z H, Dai X F, Zhang M, Cui Y T, Chen J L and Wu G H 2004 wxActa Phys. Sin.53 3191 (in Chinese)
[20] Jiles D C and Thoelke J B 1991 wxIEEE. Trans. Magn.27 5352
[21] Armstrong W D 1997 wxJ. Appl. Phys.81 2321
[22] Mei W, Okane T and Umeda T 1998 wxJ. Appl. Phys.84 6208
[23] Jiang C B, Zhang H B, Wang Z B and Xu H B 2008 wxJ. Phys. D: Appl. Phys.41 155012
[24] Atulasimha J, Akhras G and Flatau A B 2008 wxJ. Appl. Phys.103 07B336
[25] Gao F, Jiang C B, Liu J H and Xu H B 2006 wxJ. Appl. Phys.100 123916
[26] Rafique S, Cullen J R, Wuttig M and Cui J 2004 wxJ. Appl. Phys.95 6939
[27] Kellogg R A, Flatau A B, Clark A E, Wun-Fogle M and Lograsso T A 2002 wxJ. Appl. Phys.91 7821
[1] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[4] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[7] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[8] Heterogeneous hydration patterns of G-quadruplex DNA
Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕). Chin. Phys. B, 2023, 32(2): 028702.
[9] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[10] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[11] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[12] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[13] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
No Suggested Reading articles found!