CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of pre-deformation on the martensitic transformation and magnetocaloric property in Ni–Mn–Co–Sn ribbons |
Ma Sheng-Can(马胜灿), Xuan Hai-Cheng(轩海成), Zhang Cheng-Liang(张成亮), Wang Liao-Yu(王辽宇), Cao Qing-Qi(曹庆琪), Wang Dun-Hui(王敦辉)†, and Du You-Wei(都有为) |
National Laboratory of Solid State Microstructures and Key Laboratory of Nanomaterials for Jiang Su Province, Nanjing University, Nanjing 210093, China |
|
|
Abstract This paper investigates the martensitic transformation and magnetocaloric effect in pre-deformed Ni–Mn–Co–Sn ribbons. The experimental results show that the reverse martensitic transformation temperature TM increases with the increasing pre-pressure, suggesting that pre-deformation is another effective way to adjust TM in ferromagnetic shape memory alloys. Large magnetic entropy changes and refrigerant capacities are obtained in these ribbons as well. It also discusses the origin of the enhanced martensitic transformation temperature and magnetocaloric property in pre-deformed Ni–Mn–Co–Sn ribbons.
|
Received: 09 April 2010
Revised: 06 May 2010
Accepted manuscript online:
|
PACS:
|
62.20.F-
|
(Deformation and plasticity)
|
|
64.70.K-
|
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
81.40.Lm
|
(Deformation, plasticity, and creep)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2005CB623605), the National Natural Science Foundation of China (Grant Nos. 50701022 and 50831006) and the Program for New Century Excellent Talents of China (Grant No. NCET-08-0278). |
Cite this article:
Ma Sheng-Can(马胜灿), Xuan Hai-Cheng(轩海成), Zhang Cheng-Liang(张成亮), Wang Liao-Yu(王辽宇), Cao Qing-Qi(曹庆琪), Wang Dun-Hui(王敦辉), and Du You-Wei(都有为) Effects of pre-deformation on the martensitic transformation and magnetocaloric property in Ni–Mn–Co–Sn ribbons 2010 Chin. Phys. B 19 117503
|
[1] |
Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 4358
|
[2] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2005 Nat. Mater. (London) 4 450
|
[3] |
Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T and Ishida K 2006 Nature (London) 439 957.
|
[4] |
Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2007 Phys. Rev. B 75 104414
|
[5] |
Han Z D, Wang D H, Zhang C L, Gu B X and Du Y W 2007 Appl. Phys. Lett. 90 042507
|
[6] |
Jing C, Li Z, Chen J P, Lu Y M, Cao S X and Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese)
|
[7] |
Jing C, Chen J P, Li Z, Cao S X and Zhang J C 2008 Acta Phys. Sin. 57 4450 (in Chinese)
|
[8] |
Zhang H L, Li Z, Qiao Y F, Cao S X, Zhang J C and Jing C 2009 Acta Phys. Sin. 58 7857 (in Chinese)
|
[9] |
Hernando B, S'anchez Llamazares J L, Santos J D, Escoda Ll, Su nol J J, Varga R, Baldomir D and Serantes D 2008 Appl. Phys. Lett. 92 042504
|
[10] |
Hernando B, S'anchez Llamazares J L, Prida V M, Baldomir D, Serantes D, Ilyn M and Gonz'alez J 2009 Appl. Phys. Lett. 94 222502
|
[11] |
Xuan H C, Xie K X, Wang D H, Han Z D, Zhang C L, Gu B X and Du Y W 2008 Appl. Phys. Lett. 92 242506
|
[12] |
Liu J, Woodcock T G Scheerbaum N and Gutfleisch O 2009 Acta Mater. 57 4911
|
[13] |
Pathak A K, Khan M, Dubenko I, Stadler S and Ali N 2007 Appl. Phys. Lett. 90 262504
|
[14] |
Aksoy S, Krenke T, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2007 Appl. Phys. Lett. 91 241916
|
[15] |
Xuan H C, Wang D H, Zhang C L, Han Z D, Gu B X and Du Y W 2008 Appl. Phys. Lett. 92 102503
|
[16] |
Nayak A K, Suresh K G, Nigam A K, Coelho A A and Gama S 2009 J. Appl. Phys. 106 053901
|
[17] |
Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2007 Appl. Phys. Lett. 90 242501
|
[18] |
Sharma V K, Chattopadhyay M K, Shaeb K H B, Chouhan A and Roy S B 2006 Appl. Phys. Lett. 89 222509
|
[19] |
Ma nosa L, Moya X, Planes A, Gutfleisch O, Lyubina J, Barrio M, Tamarit J L, Aksoy S, Krenke T and Acet M 2008 Appl. Phys. Lett. 92 012515
|
[20] |
Lin H C, Wu S K, Chou T S and Kao H P 1991 Acta Metall. Mater 39 2069
|
[21] |
Piao M, Otsuka K, Miyazaki S and Horikawa H 1993 Mater. Trans. JIM 34 919
|
[22] |
Liu Y and Favier D 2000 Acta Mater. 48 3489
|
[23] |
Tan G and Liu Y 2004 Intermetallics 12 373 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|