Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100308    DOI: 10.1088/1674-1056/19/10/100308
GENERAL Prev   Next  

Comparative studies of open qubit via Bloch equation and master equation of Redfield form

Shen Yan(沈燕), Lu Yu-Ping(卢俞平), and Liang Xian-Ting(梁先庭)†ger
Department of Physics and Institute of Modern Physics, Ningbo University, Ningbo 315211, China
Abstract  In this paper, we investigate the dynamics of an open qubit model by solving two sets of its reduced dynamical equations. One set of the equations is the well-known Bloch equations and the other is the widely investigated master equations of Redfield form. Both of them are obtained from the perturbation approximation which demands the system of interest weakly coupled to its environment. It is shown that the qubit has a longer decoherence and relaxiation time as the dynamics is described by the Redfield equantions.
Keywords:  reduced dynamics      relaxation      decoherence  
Received:  02 March 2010      Revised:  06 May 2010      Accepted manuscript online: 
PACS:  02.30.-f (Function theory, analysis)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10675066), Natural Science Foundation of Ningbo City (Grant No. 2008A610098), and K.C. Wong Magna Foundation in Ningbo University.

Cite this article: 

Shen Yan(沈燕), Lu Yu-Ping(卢俞平), and Liang Xian-Ting(梁先庭) Comparative studies of open qubit via Bloch equation and master equation of Redfield form 2010 Chin. Phys. B 19 100308

[1] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[2] Weiss U 1999 Quantum Dissipative Systems 2nd edn. (Singapore: World Scientific)
[3] Tu M W Y and Zhang W M 2008 Phys. Rev. B 78 235311
[4] Ishizaki A and Fleming G R 2009 J. Chem. Phys. 130 234110
[5] Ishizaki A and Fleming G R 2009 J. Chem. Phys. 130 234111
[6] Makarov D E and Makri N 1994 Chem. Phys. Lett. 221 482
[7] Makri N and Makarov D E 1995 J. Chem. Phys. 102 4600
[8] Makri N and Makarov D E 1995 J. Chem. Phys. 102 4611
[9] Makri N, Sim E, Makarov D E and Topaler M 1996 Proc. Nat. Acad. Sci. USA 93 3926
[10] LeeMT and ZhangWM2008 J. Chem. Phys. 129 224106
[11] Thorwart M, Reimann P and H¨anggi P 2000 Phys. Rev. E 62 5808
[12] Thorwart M, Paladino E and Grifoni M 2004 Chem. Phys. 296 333
[13] Liang X T 2005 Phys. Rev. B 72 245328
[14] Laird B B, Budimir J and Skinner J L 1991 J. Chem. Phys. 94 4391
[15] Budimir J and Skinner J L 1987 J. Stat. Phys. 49 1029
[16] Laird B B and Skinner J L 1991 J. Chem. Phys. 94 4405
[17] Burkard G, Koch R H and DiVincenzo D P 2004 Phys. Rev. B 69 064503
[18] Liang X T 2008 Chem. Phys. B 352 106
[19] Liang X T 2007 Chem. Phys. Lett. 449 296
[20] Li Z Z, Pan X Y and Liang X T 2008 Physica E 41 220
[21] Li Z Q and Liang X T 2008 Commun. Theor. Phys. 50 77
[22] Carlsen1 I and Schattke1 W 1982 Zeitschrift fur Physik B: Condensed Matter 45 315
[23] Redfield A G 1965 Adv. Magn. Reson. 1 1
[24] DiVincenzo D P, Brito F and Koch R H 2006 Phys. Rev. B 74 014514
[25] Mančal T, Pisliakov A V and Fleming G R 2006 J. Chem. Phys. 124 234504
[26] Pisliakov A V, Manˇcal T and Fleming G R 2006 J. Chem. Phys. 124 234505
[27] Liang B L and Wang J S 2007 Chin. Phys. 16 3097
[28] Wang J S, Meng X G and Liang B L 2010 Chin. Phys. B 19 044202
[29] Li T F, You J Q, Liu J S and Li Z J 2009 Chin. Phys. B 18 430
[30] Ren T T, Feng M, Chang W L and Luo J 2009 Chin. Phys. B 18 5173
[31] Guo L and Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese)
[32] Wang L, Bi S W and Wang G G 2010 Acta Phys. Sin. 59 87 (in Chinese)
[33] Fox R F 1976 J. Math. Phys. 17 1148
[34] Van Kampen N G 1974 Physica 74 215
[35] Liang X T, Zhang W M and Zhuo Y Z 2010 Phys. Rev. E 81 011906
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[3] Effect of conical intersection of benzene on non-adiabatic dynamics
Duo-Duo Li(李多多) and Song Zhang(张嵩). Chin. Phys. B, 2022, 31(8): 083103.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Small activation entropy bestows high-stability of nanoconfined D-mannitol
Lin Cao(曹琳), Li-Jian Song(宋丽建), Ya-Ru Cao(曹亚茹), Wei Xu(许巍), Jun-Tao Huo(霍军涛), Yun-Zhuo Lv(吕云卓), and Jun-Qiang Wang(王军强). Chin. Phys. B, 2021, 30(7): 076103.
[8] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[9] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[10] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[11] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[12] Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve
Xian-Jin Qi(祁先进), Ni-Na Yang(杨妮娜), Xiao-Xu Duan(段孝旭), and Xue-Zhu Li(李雪竹). Chin. Phys. B, 2021, 30(10): 107501.
[13] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[14] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[15] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
No Suggested Reading articles found!