Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017201    DOI: 10.1088/1674-1056/19/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ab initio investigation of boron nanodevices: conductances of the different geometric conformations

Li Gui-Qin
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Conductances of different geometric conformations of boron ribbon devices are calculated by the ab initio method. The I--V characteristics of three devices are rather different due to the difference in structure. The current of the hexagonal boron device is the largest and increases nonlinearly. The current of the hybrid hexagon-triangle boron device displays a large low-bias current and saturates at a value of about 5.2~μ A. The current of the flat triangular boron flake exhibits a voltage gap at low bias and rises sharply with increasing voltage. The flat triangular boron device can be either conducting or insulating, depending on the field.
Keywords:  conductance      different geometry conformation      boron  
Received:  20 May 2009      Revised:  13 June 2009      Published:  15 January 2010
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  61.46.Fg (Nanotubes)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  85.35.Kt (Nanotube devices)  

Cite this article: 

Li Gui-Qin Ab initio investigation of boron nanodevices: conductances of the different geometric conformations 2010 Chin. Phys. B 19 017201

[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[2] Ijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[5] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Narchenkov M A, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[6] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett 100 206802
[7] Lipscomb W L 1963 Boron Hydrides (New York: Benjamin W A)
[8] Meutterties E L 1975 Boron Hydride Chemistry (New York: Academic)
[9] Cotton F A, Wilkinson G, Murillo C A and Bochmann M 1999 Advanced Inorganic Chemistry (New York: Wiley)
[10] Jemmis E D, Balakrishnarajan M M and Pancharatna P D 2002 Chem. Rev. 102 93
[11] Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S and Gao H J 2008 Chin. Phys. B 17 3827
[12] Boustani I, Quandt A, Hernandez E and Rubio A 1999 J. Chem. Phys. 110 3176
[13] Evans M H, Joannopoulos J D and Pantelides S T 2005 Phys. Rev. B 72 045434
[14] Lau K C and Pandey R 2007 J. Phys. Chem. C 111 2906
[15] Kunstmann J and Quandt A 2006 Phys. Rev. B 74 035413
[16] Cabria I, Lopez M J and Alonso J A 2006 Nanotechnology 17 778
[17] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[18] Nitzan A and Ratner M A 2003 Science 300 1384
[19] Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Nature 442 904
[20] Li Z L, Wang C K, Luo Y and Xue Q K 2005 Chin. Phys. 14 1036
[21] Li G Q and Cai J 2009 Acta Phys. Sin. 58 6453 (in Chinese)
[22] Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D and Doerrer L H 2006 J. Phys. Chem. B 110 2462
[23] Ramachandran G K, Hopson T J, Rawlett A M, Nagahara L A, Primak A and Lindsay S M 2003 Science 300 1413
[24] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys: Condens. Matt. 14 2745
[25] Emberly E G and Kirczenow G 1998 Phys. Rev. B 58 10911
[26] Andriotis A N and Menon M 2001 J. Chem. Phys. 115 2737
[27] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) p117
[28] Zahid F, Paulsson M and Datta S 2003 Electrical Conduction through Molecules, chapter in 2003 Advanced Semiconductors and Organic Nanotechniques (New York: Academic Press)[ Paulsson M, Zahid F and Datta S 2005 Huckel-IV on the nanoHub, https://www.nanohub.org/resources/422/
[29] Lide D R 2000 CRC Handbook of Chemistry and Physics (Boca Raton FL: CRC)
[1] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[2] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[3] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[4] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[5] Fabrication and characterization of vertical GaN Schottky barrier diodes with boron-implanted termination
Wei-Fan Wang(王伟凡), Jian-Feng Wang(王建峰), Yu-Min Zhang(张育民), Teng-Kun Li(李腾坤), Rui Xiong(熊瑞), Ke Xu(徐科). Chin. Phys. B, 2020, 29(4): 047305.
[6] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超), Tong-Xiang Liang(梁彤祥). Chin. Phys. B, 2020, 29(10): 103102.
[7] Surperhard monoclinic BC6N allotropes: First-principles investigations
Nian-Rui Qu(屈年瑞), Hong-Chao Wang(王洪超), Qing Li(李青), Yi-Ding Li(李一鼎), Zhi-Ping Li(李志平), Hui-Yang Gou(缑慧阳), Fa-Ming Gao(高发明). Chin. Phys. B, 2019, 28(9): 096201.
[8] Nanosheet-structured B4C with high hardness up to 42 GPa
Chang-Chun Wang(王常春), Le-Le Song(宋乐乐). Chin. Phys. B, 2019, 28(6): 066201.
[9] Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(10): 107303.
[10] Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer
Mei Ge(葛梅), Qing Cai(蔡青), Bao-Hua Zhang(张保花), Dun-Jun Chen(陈敦军), Li-Qun Hu(胡立群), Jun-Jun Xue(薛俊俊), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2019, 28(10): 107301.
[11] Cluster structure prediction via CALYPSO method
Yonghong Tian(田永红), Weiguo Sun(孙伟国), Bole Chen(陈伯乐), Yuanyuan Jin(金圆圆), Cheng Lu(卢成). Chin. Phys. B, 2019, 28(10): 103104.
[12] First-principles study of structural, electronic, elastic, and thermal properties of Imm2-BC
Qiang Li(李强), Zhen-Ling Wang(王振玲), Yu-Cheng Yu(于玉城), Lan Ma(马兰), Shao-Li Yang(杨绍利), Hai-Bo Wang(王海波), Rui Zhang(张锐). Chin. Phys. B, 2019, 28(1): 013101.
[13] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[14] Electrical controllable spin valves in a zigzag silicene nanoribbon ferromagnetic junction
Lin Zhang(张林). Chin. Phys. B, 2018, 27(6): 067203.
[15] General theories and features of interfacial thermal transport
Hangbo Zhou(周杭波), Gang Zhang(张刚). Chin. Phys. B, 2018, 27(3): 034401.
No Suggested Reading articles found!