Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017201    DOI: 10.1088/1674-1056/19/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ab initio investigation of boron nanodevices: conductances of the different geometric conformations

Li Gui-Qin(李桂琴)
Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  Conductances of different geometric conformations of boron ribbon devices are calculated by the ab initio method. The I--V characteristics of three devices are rather different due to the difference in structure. The current of the hexagonal boron device is the largest and increases nonlinearly. The current of the hybrid hexagon-triangle boron device displays a large low-bias current and saturates at a value of about 5.2 μA. The current of the flat triangular boron flake exhibits a voltage gap at low bias and rises sharply with increasing voltage. The flat triangular boron device can be either conducting or insulating, depending on the field.
Keywords:  boron      conductance      different geometry conformation  
Received:  20 May 2009      Revised:  13 June 2009      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  61.46.Fg (Nanotubes)  
  71.15.Ap (Basis sets (LCAO, plane-wave, APW, etc.) and related methodology (scattering methods, ASA, linearized methods, etc.))  
  85.35.Kt (Nanotube devices)  

Cite this article: 

Li Gui-Qin(李桂琴) Ab initio investigation of boron nanodevices: conductances of the different geometric conformations 2010 Chin. Phys. B 19 017201

[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[2] Ijima S 1991 Nature 354 56
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[5] Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Narchenkov M A, Conrad E H, First P N and de Heer W A 2006 Science 312 1191
[6] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett 100 206802
[7] Lipscomb W L 1963 Boron Hydrides (New York: Benjamin W A)
[8] Meutterties E L 1975 Boron Hydride Chemistry (New York: Academic)
[9] Cotton F A, Wilkinson G, Murillo C A and Bochmann M 1999 Advanced Inorganic Chemistry (New York: Wiley)
[10] Jemmis E D, Balakrishnarajan M M and Pancharatna P D 2002 Chem. Rev. 102 93
[11] Wang X J, Tian J F, Bao L H, Yang T Z, Hui C, Liu F, Shen C M, Xu N S and Gao H J 2008 Chin. Phys. B 17 3827
[12] Boustani I, Quandt A, Hernandez E and Rubio A 1999 J. Chem. Phys. 110 3176
[13] Evans M H, Joannopoulos J D and Pantelides S T 2005 Phys. Rev. B 72 045434
[14] Lau K C and Pandey R 2007 J. Phys. Chem. C 111 2906
[15] Kunstmann J and Quandt A 2006 Phys. Rev. B 74 035413
[16] Cabria I, Lopez M J and Alonso J A 2006 Nanotechnology 17 778
[17] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[18] Nitzan A and Ratner M A 2003 Science 300 1384
[19] Venkataraman L, Klare J E, Nuckolls C, Hybertsen M S and Steigerwald M L 2006 Nature 442 904
[20] Li Z L, Wang C K, Luo Y and Xue Q K 2005 Chin. Phys. 14 1036
[21] Li G Q and Cai J 2009 Acta Phys. Sin. 58 6453 (in Chinese)
[22] Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D and Doerrer L H 2006 J. Phys. Chem. B 110 2462
[23] Ramachandran G K, Hopson T J, Rawlett A M, Nagahara L A, Primak A and Lindsay S M 2003 Science 300 1413
[24] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys: Condens. Matt. 14 2745
[25] Emberly E G and Kirczenow G 1998 Phys. Rev. B 58 10911
[26] Andriotis A N and Menon M 2001 J. Chem. Phys. 115 2737
[27] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) p117
[28] Zahid F, Paulsson M and Datta S 2003 Electrical Conduction through Molecules, chapter in 2003 Advanced Semiconductors and Organic Nanotechniques (New York: Academic Press)[ Paulsson M, Zahid F and Datta S 2005 Huckel-IV on the nanoHub, https://www.nanohub.org/resources/422/
[29] Lide D R 2000 CRC Handbook of Chemistry and Physics (Boca Raton FL: CRC)
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[3] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[4] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[5] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[6] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[7] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[8] Effect of oxygen on regulation of properties of moderately boron-doped diamond films
Dong-Yang Liu(刘东阳), Li-Cai Hao(郝礼才), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128104.
[9] Accurate theoretical evaluation of strain energy of all-carboatomic ring (cyclo[2n]carbon), boron nitride ring, and cyclic polyacetylene
Tian Lu(卢天), Zeyu Liu(刘泽玉), and Qinxue Chen(陈沁雪). Chin. Phys. B, 2022, 31(12): 126101.
[10] Effects of B segregation on Mo-rich phase precipitation in S31254 super-austenitic stainless steels: Experimental and first-principles study
Pan-Pan Xu(徐攀攀), Jin-Yao Ma(马晋遥), Zhou-Hua Jiang(姜周华), Yi Zhang(张翊), Chao-Xiong Liang(梁超雄), Nan Dong(董楠), and Pei-De Han(韩培德). Chin. Phys. B, 2022, 31(11): 116402.
[11] Observation of source/drain bias-controlled quantum transport spectrum in junctionless silicon nanowire transistor
Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Di Zhang(张晓迪), Jun-Dong Chen(陈俊东), and Fu-Hua Yang(杨富华). Chin. Phys. B, 2022, 31(1): 017701.
[12] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[13] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[14] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[15] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
No Suggested Reading articles found!