CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Boson peak in Sm-Al-Co ternary metallic glasses and its possible structural origin |
Liu Hui-Mei(刘慧美)a), Lu Cheng-Liang(陆成亮) a), Wang Ke-Feng(王克锋)a)b), Liu Jun-Ming(刘俊明)a)b)†, Wang Qing(王清)c), and Dong Chuang(董闯)c) |
a Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China; b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China; c State Key Laboratory of Materials Modification, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract The low temperature specific heat of Sm-Al-Co ternary metallic glasses is investigated and a clear anomaly associated with the Boson peak is identified. While this anomaly depends slightly on the chemical composition, it has no dependence on external magnetic field. To figure out the mechanism of the Boson peak, we interpret the data within various model frameworks. Unlike earlier work, our study shows that this Boson peak is mainly ascribed to an additional T2 term of the specific heat, which may originate from the quasi-two-dimensional and short-range ordered structure units possibly existing in the metallic glasses.
|
Received: 23 June 2009
Revised: 04 July 2009
Accepted manuscript online:
|
PACS:
|
61.43.Fs
|
(Glasses)
|
|
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
|
71.23.Cq
|
(Amorphous semiconductors, metallic glasses, glasses)
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos. 50601013, 10674061
and 50832002) and the National Basic Research Program of China
(Grant No. 2006CB921802). |
Cite this article:
Liu Hui-Mei(刘慧美), Lu Cheng-Liang(陆成亮), Wang Ke-Feng(王克锋), Liu Jun-Ming(刘俊明), Wang Qing(王清), and Dong Chuang(董闯) Boson peak in Sm-Al-Co ternary metallic glasses and its possible structural origin 2010 Chin. Phys. B 19 017102
|
[1] |
Li Y, Bai H Y and Wang W H 2006 Phys. Rev. B 74 052201
|
[2] |
Deng Y F, Yang F, Yang J L and Zhang W 2007 Chin. Phys. 16 2051
|
[3] |
Gebert A, Eckert J, Kühn U and Reger-Leonhard A 2001 Chin. Phys. 10 40
|
[4] |
Jannussis A, Politis C, Rieth M, Baskoutas A and Schommers W 2001 Chin. Phys. 10 137
|
[5] |
Klinger M I and Vatova L 2005 Phys. Rev. B 72 134206
|
[6] |
Steurer W, Apfolter A, Koch M, Ernst W E, Holst B, S?ndergard E and Manson J R 2007 Phys. Rev. Lett. 99 035503
|
[7] |
Schirmacher W, Ruocco G and Scopigno T 2007 Phys. Rev. Lett. 98 025501
|
[8] |
Gotze W and Mayr M R 2000 Phys. Rev. E 61] 587[ Gotze W and Sperl M 2004 Phys. Rev. Lett. 92 105701
|
[9] |
Horbach J, Kob W and Binder K 2001 Eur. Phys. J. B 19 531
|
[10] |
Klinger M I and Kosevich A M 2001 Phys. Lett. A 280 365[ Klinger M I and Kosevich A M 2002 Phys. Lett. 295 311
|
[11] |
Grigera T S, Martin-Mayor V, Parisi G and Verrocchio P 2001 Phys. Rev. Lett. 87] 085502[ Grigera T S, Martin-Mayor V, Parisi G and Verrocchio P 2003 Nature (London) 422 289[ Ciliberti S, Grigera T S, Martin-Mayor V, Parisi G and Verrochio P 2003 J. Chem. Phys. 119 8577
|
[12] |
Klinger M I and Halpern V 2003 Phys. Lett. A 313 448
|
[13] |
Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029
|
[14] |
Anderson P W, Halperin B I and Varma C M 1972 Philos. Mag. 25] 1[ Phillips W A 1972 J. Low Temp. Phys. 7 351
|
[15] |
Gil L, Ramos M A, Bringer A and Buchenau U 1993 Phys. Rev. Lett. 70 182
|
[16] |
Wu J, Wang Q, Chen A, Wang Y M, Qiang J B and Dong C 2007 Intermetallics 15 652
|
[17] |
Wu J, Wang Q, Chen W R, Zhang Q Y, Qiang J B and Dong C 2007 J. Univ. Sci. Technol. Beijing 14 50
|
[18] |
Lashley J C, Hundley M F, Migliori A, Sarrao J L, Pagliuso P G, Darling T W, Jaime M, Cooley J C, Hults W L, Morales L, Thoma D J, Smith J L, Boerio-Goates J, Woodfield B F, Stewart G R, Fisher R A and Phillips N E 2003 Cryogenics 43 369
|
[19] |
Ghivelder L, Castillo I A, Gusm\~ao M A, Alonso J A and Cohen L F 1999 Phys. Rev. B 60 12184
|
[20] |
Debye P 1912 Ann. Phys. 39 789
|
[21] |
Chen N X 1990 Phys. Rev. Lett. 64 1193
|
[22] |
Desorbo W and Tyler W W 1953 J. Chem. Phys. 21 1660[ Krumhansi H and Brooks H 1953 J. Chem. Phys. 21 1663
|
[23] |
Bernal J D 1959 Nature (London) 183 141[ Bernal J D 1960 Nature (London) 188 910
|
[24] |
Ichitsubo T, Matsubara E, Chen H S, Saida J, Yamamoto T and Nishiyama N 2006 J. Chem. Phys. 125] 154502
|
[25] |
Liu X J, Chen G L, Hui X D, Hou H Y, Yao K F and Liu C T 2007 J. Appl. Phys. 102 063515
|
[26] |
Schick C and Donth E 1991 Phys. Scr. 43 423
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|