Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010305    DOI: 10.1088/1674-1056/19/1/010305
GENERAL Prev   Next  

Critical entanglement and geometric phase of a two-qubitmodel with Dzyaloshinski--Moriya anisotropic interaction

Li Zhi-Jian(李志坚), Cheng Lu(程璐), and Wen Jiao-Jin(温姣进)
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006, China
Abstract  We consider a two-qubit system described by the Heisenberg XY model with Dzyaloshinski--Moriya (DM) anisotropic interaction in a perpendicular magnetic field to investigate the relation between entanglement, geometric phase and quantum phase transition (QPT). It is shown that the DM interaction has an effect on the critical boundary. The combination of entanglement and geometric phase may characterize QPT completely. Their jumps mean that the occurrence of QPT and inversely the QPT at the critical point at least corresponds to a jump of one of them.
Keywords:  entanglement      geometric phase      quantum phase transition  
Received:  06 December 2008      Revised:  15 May 2009      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: Project supported by the Natural Science Foundation for Young Scientists of Shanxi Province of China (Grant No. 2007021001), the Science and Technology Key Item of Chinese Ministry of Education (Grant No. 207017), National Fundamental Fund of Personnel Training (Grant No. J0730317) and the National Natural Science Foundation of China (Grant No. 10774094).

Cite this article: 

Li Zhi-Jian(李志坚), Cheng Lu(程璐), and Wen Jiao-Jin(温姣进) Critical entanglement and geometric phase of a two-qubitmodel with Dzyaloshinski--Moriya anisotropic interaction 2010 Chin. Phys. B 19 010305

[1] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[2] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature (London) 416 608
[3] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[4] Chen Y, Zanardi P, Wang Z D and Zhang F C 2006 New J. Phys. 8 97
[5] Shan C J, Cheng W W, Liu T K, Huang Y X and Li H 2008 Chin. Phys. B 17 1674
[6] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
[7] Carollo A C M and Pachos J K 2005 Phys. Rev. Lett. 95 157203
[8] Zhu S L 2006 Phys. Rev. Lett. 96 077206
[9] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge Univ. Press)
[10] Vojta M 2003 Rep. Prog. Phys. 66 2069
[11] Berry M V 1984 Proc. R. Soc. London Ser. A 392 45
[12] Shapere A and Wilczek F 1989 Geometric Phases in Physics (Singapore: World Scientific)
[13] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[14] Oh S 2009 Phys. Lett. A 373 644
[15] Moriya T 1960 Phys. Rev. Lett. 4 228
[16] Zhang G F 2007 Phys. Rev. A 75 034304
[17] Qin M, Xu S L, Tao Y J and Tian D P 2008 Chin. Phys. B 17 2800
[18] Hu X M and Liu J M 2009 Chin. Phys. B 18 411
[19] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[10] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[11] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[12] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[13] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[14] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[15] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
No Suggested Reading articles found!