Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 024303    DOI: 10.1088/1674-1056/25/2/024303
Special Issue: Virtual Special Topic — Acoustics
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld joints

Yan-Xun Xiang(项延训)1, Wu-Jun Zhu(朱武军)1, Ming-Xi Deng(邓明晰)2, Fu-Zhen Xuan(轩福贞)1
1. Key Laboratory of Pressure Systems and Safety of Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. Department of Physics, Logistics Engineering University, Chongqing 400016, China
Abstract  The experimental measurements and numerical simulations are performed to study ultrasonic nonlinear responses from the plastic deformation in weld joints. The ultrasonic nonlinear signals are measured in the plastic deformed 30Cr2Ni4MoV specimens, and the results show that the nonlinear parameter monotonically increases with the plastic strain, and that the variation of nonlinear parameter in the weld region is maximal compared with those in the heat-affected zone and base regions. Microscopic images relating to the microstructure evolution of the weld region are studied to reveal that the change of nonlinear parameter is mainly attributed to dislocation evolutions in the process of plastic deformation loading. Meanwhile, the finite element model is developed to investigate nonlinear behaviors of ultrasonic waves propagating in a plastic deformed material based on the nonlinear stress-strain constitutive relationship in a medium. Moreover, a pinned string model is adopted to simulate dislocation evolution during plastic damages. The simulation and experimental results show that they are in good consistency with each other, and reveal a rising acoustic nonlinearity due to the variations of dislocation length and density and the resulting stress concentration.
Keywords:  ultrasonic nonlinearity      second harmonics      plastic deformation      finite element modeling  
Received:  31 July 2015      Revised:  07 September 2015      Accepted manuscript online: 
PACS:  43.25.+y (Nonlinear acoustics)  
  62.20.-x (Mechanical properties of solids)  
  81.70.Cv (Nondestructive testing: ultrasonic testing, photoacoustic testing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51325504, 11474093, and 11474361) and the Shanghai Rising-Star Program, China (Grant No. 14QA1401200).
Corresponding Authors:  Fu-Zhen Xuan     E-mail:  fzxuan@ecust.edu.cn

Cite this article: 

Yan-Xun Xiang(项延训), Wu-Jun Zhu(朱武军), Ming-Xi Deng(邓明晰), Fu-Zhen Xuan(轩福贞) Experimental and numerical studies of nonlinear ultrasonic responses on plastic deformation in weld joints 2016 Chin. Phys. B 25 024303

[1] Watanabe T, Tabuchi M, Yamazaki M, Hongo H and Tanabe T 2006 Int. J. Pressure Vessels Piping 83 63
[2] Sposito G, Ward C, Cawley P, Nagy P B and Scruby C 2010 NDT & E Int. 43 555
[3] Xiang Y X, Deng M X and Xuan F Z 2014 J. Nondestruct. Eval. 33 279
[4] Kim C S and Jhang K Y 2012 Chin. Phys. Lett. 29 060702
[5] Deng M X and Xiang Y X 2010 Chin. Phys. B 19 114302
[6] Xiang Y X, Deng M X, Xuan F Z and Liu C J 2011 Ultrasonics 51 974
[7] Buck O, Morris W L and Richardson J M 1978 Appl. Phys. Lett. 33 371
[8] Nagy P B 1998 Ultrasonics 36 375
[9] Jhang K Y and Kim K C 1999 Ultrasonics 37 39
[10] Cantrell J H and Yost W T 2001 Int. J. Fatigue 23 487
[11] Rao V V S J, Kannan E, Prakash R V and Balasubramaniam K 2009 Mater. Sci. Eng. A 512 92
[12] Walker S V, Kim J Y, Qu J and Jacobs L J 2012 NDT & E Int. 48 10
[13] Deng M X and Pei J F 2007 Appl. Phys. Lett. 90 121902
[14] Pruell C, Kim J Y, Qu J and Jacobs L J 2007 Appl. Phys. Lett. 91 231911
[15] Xiang Y X and Deng M X 2008 Chin. Phys. B 17 4232
[16] Thiele S, Kim J Y, Qu J and Jacobs L J 2014 Ultrasonics 54 1470
[17] Cantrell J H 2006 J. Appl. Phys. 100 063508
[18] Zhang J F, Xuan F Z and Xiang Y X 2013 Europhys. Lett. 103 68003
[19] Cash W D and Cai W 2011 J. Appl. Phys. 109 014915
[20] Oruganti R K, Sivaramanivas R, Karthik T N, Kommareddy V, Ramadurai B, Ganesan B, Nieters E J, Gigliotti M F, Keller M E and Shyamsunder M T 2007 Int. J. Fatigue 29 2032
[21] Kumar A, Torbet C J, Jones J W and Pollock T M 2009 J. Appl. Phys. 106 024904
[22] Hikata A, Chick B B and Elbaum C 1965 J. Appl. Phys. 36 229
[23] Chillara V K and Lissenden C J 2014 Ultrasonics 54 1553
[24] Matsuda N and Biwa S 2012 Jpn. J. Appl. Phys. 51 07GB14
[25] Lee B C and Staszewski W J 2007 Smart Mater. Struct. 16 249
[26] Xiang Y X, Zhu W J, Liu C J, Xuan F Z, Wang Y N and Kuang W C 2015 NDT & E Int. 72 41
[27] Pešička J, Kužel R, Dronhofer A and Eggeler G 2003 Acta Mater. 51 4847
[28] Xiang Y X, Deng M X, Liu C J and Xuan F Z 2015 J. Appl. Phys. 117 214903
[29] Norris A N 1998 Nonlinear Acoustics (Hamilton M and Blackstock D eds.) (San Diego CA: Academic Press) pp. 263-264
[30] Cantrell J H and Yost W T 2000 Appl. Phys. Lett. 77 1952
[31] Shui Y and Solodov I Y 1988 J. Appl. Phys. 64 6155
[32] Sewell G 2005 The numerical solution of ordinary and partial differential equations, 2nd edn. (New Jersey: John Wiley and Sons Inc.) pp. 53-54
[1] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[2] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[3] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[4] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[5] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
[6] Plastic analysis of the crack problem in two-dimensional decagonal Al-Ni-Co quasicrystalline materials of point group 10,$\overline{10}$
Li Wu(李梧) and Fan Tian You(范天佑). Chin. Phys. B, 2011, 20(3): 036101.
[7] Cumulative second-harmonic generation of Lamb waves propagating in a two-layered solid plate
Xiang Yan-Xun (项延训), Deng Ming-Xi (邓明晰). Chin. Phys. B, 2008, 17(11): 4232-4241.
[8] The increasing of localized free volume in bulk metallic glass under uniaxial compression
Deng Yu-Fu(邓玉福), Yang Fei(杨飞), Yang Jian-Lin(杨建林), and Zhang Wei(张微). Chin. Phys. B, 2007, 16(7): 2051-2055.
[9] Effect of temperature on deformation of carbon nanotube under compression
Wang Yu (王宇), Ni Xiang-Gui (倪向贵), Wang Xiu-Xi (王秀喜), Wu Heng-An (吴恒安). Chin. Phys. B, 2003, 12(9): 1007-1010.
No Suggested Reading articles found!