Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070501    DOI: 10.1088/1674-1056/adca9c
GENERAL Prev   Next  

Complexity dynamics analysis of a dual-channel green supply chain with government intervention and cap-and-trade regulation

Yuhao Zhang(张玉豪)1, Lin Huang(黄林)2,3,†, and Man Yang(杨满)4
1 School of Business, Jiangsu University of Science and Technology, Suzhou 215600, China;
2 School of Economics and Management, Huzhou University, Huzhou 313000, China;
3 Institute of Sustainable Development, Huzhou University, Huzhou 313000, China;
4 Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
Abstract  This paper studies a dual-channel green supply chain consisting of one manufacturer and one retailer in presence of government green subsidy and cap-and-trade regulation policies. We first develop and analyze a single-period Stackelberg and a multi-period dynamic Stackelberg game models respectively with consistent pricing strategy. Subsequently, we extend these two game models by utilizing an inconsistent pricing strategy. The optimal solutions for the single-period Stackelberg game models in both scenarios are derived by means of the backward induction approach. Moreover, the existence and local asymptotic stability of the equilibrium points of the multi-period dynamic Stackelberg game models are examined, and the complex dynamics of chain members' long-term strategy evolution are investigated through chaos theory and numerical simulation. Additionally, the variable feedback control and time-delay feedback control method are utilized to eliminate system chaos respectively. The results indicate that (i) The excessive fast adjustment speeds by the manufacturer have a destabilizing effect on the stability of the Nash equilibrium point. (ii) The manufacturer's profits are improved with green subsidy degree increases, while its impact on the retailer's profits depends on certain parameter conditions, and the high carbon trading price is disadvantage to both chain members. (iii) The system's motion can transition from a steady state to a chaotic period through period-doubling or Neimark-Sacker bifurcations. (iv) The system's steady state is conducive to the manufacturer, while the retailer can benefit from the system's periodic cycles. Furthermore, both chain members' profits are declined when the system becomes chaotic. Lastly, the variable feedback and time-delay feedback control method can effectively eliminate system chaos.
Keywords:  dual-channel      green subsidy      cap-and-trade      Stackelberg game      bifurcation and chaos  
Received:  29 October 2024      Revised:  31 March 2025      Accepted manuscript online:  09 April 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the General Projects of Philosophy and Social Science Research in Jiangsu Province Universities (Grant No. 2024SJYB1101), the National Youth Fund Guidance Project of Jiangsu University of Science and Technology (Zhangjiagang Campus), the Special Project for Cultivating Leading Talents in Philosophy and Social Science Planning of Zhejiang Province, China (Grant No. 22YJRC14ZD),the Shanghai Pujiang Program (Grant No. 2021PJC066), and the National Natural Science Foundation of China (Grant No. 72302142).
Corresponding Authors:  Lin Huang     E-mail:  lin-huang@163.sufe.edu.cn

Cite this article: 

Yuhao Zhang(张玉豪), Lin Huang(黄林), and Man Yang(杨满) Complexity dynamics analysis of a dual-channel green supply chain with government intervention and cap-and-trade regulation 2025 Chin. Phys. B 34 070501

[1] Cai J H and Jiang F Y 2023 Int. J. Prod. Econ. 264 108964
[2] Lyu R X, Zhang C H, Li Z T and Li Y T 2022 Comput. Ind. Eng. 163 107769
[3] Hu X, Yang Z J, Sun J and Zhang Y L 2020 J. Clean. Prod. 243 118606
[4] Zou H, Qin J and Zheng H 2023 J. Clean. Prod. 407 137107
[5] Ma J H and Wang Z X 2022 Appl. Math. Model 111 610
[6] Xu S, Govindan K, Wang W R and Yang W T 2024 Int. J. Prod. Econ. 271 109199
[7] Li Z M, Pan Y C, Yang W Ma J and Zhou M 2021 Energy. Econ. 101 105426
[8] Cao K Y, Xu X P, Wu Q and Zhang Q P 2017 J. Clean. Prod. 167 505
[9] Jauhari W A, Ramadhany S C N, Rosyidi C N, Mishra U and Hishamuddin H 2023 J. Clean. Prod. 425 138897
[10] Zhu C, Xi X and Goh M 2024 J. Environ. Manage. 358 120913
[11] Song H H, Wang Y, Mao X Y and Wang C Y 2024 Expert. Syst. Appl. 237 121606
[12] Bian J S, Zhang G Q and Zhou G H 2020 Eur. J. Oper. Res. 287 832
[13] Xu G Y, Dan B, Zhang X M and Liu C 2014 Int. J. Prod. Econ. 147 171
[14] Ghosh S K, Seikh M R and Chakrabortty M 2020 Comput. Ind. Eng. 149 106765
[15] Li B, Zhu M Y, Jiang Y S and Li Z H 2016 J. Clean. Prod. 112 2029
[16] Ma J H, Hou Y M, Wang Z X and Yang W H 2021 Energy. Policy 148 111919
[17] Yang R, Tang W S and Zhang J X 2021 Eur. J. Oper. Res. 289 553
[18] Meng Q, Li M W, Liu W Y, Li Z and Zhang J 2021 Sustain. Prod. Consum. 26 1021
[19] Barman A, De P K, Chakraborty A K, Lim C P and Das R 2023 Math. Comput. Simul. 204 401
[20] Zaefarian T, Fander A and Yaghoubi S 2024 Ann. Oper. Res. 336 1965
[21] Barman H, Pervin M, Roy S K and Weber G W 2023 Int. J. Syst. Sci.Oper. Logist. 10:1 2242770
[22] Yang, M 2023 Comput. Ind. Eng. 177 109036
[23] Yang M Zhang T and Zhang Y H 2022 Environ. Sci. Pollut. Res. 29 28208
[24] Zhang S Y, Wang C X, Yu C and Ren Y J 2019 Comput. Ind. Eng. 134 27
[25] Li J, Wang H Y, Shi V and Sun Q 2024 Eur. J. Oper. Res. 1 131
[26] Chai Q F, SunMY, Lai K H and Xiao Z D 2023 Comput. Ind. Eng. 178 109126
[27] Ma J H, Si F S, Zhang Q and Hui J 2023 Int. J. Prod. Res. 61 6675
[28] Ma J H, Tian Y, Xu T T, Koivumäki T and Xu Y Q 2022 Chaos, Solitons and Fractals 160 112131
[29] Ma J H and Xie L 2016 Nonlinear Dyn. 83 1379
[30] Zhao L W, Jin S and Jiang H Y 2022 Chaos, Solitons and Fractals 164 112492
[31] Zhang Y H and Zhang T 2023 Int. J. Bifur. Chaos 33 2350099
[32] Zhang F and Wang C 2018 Appl. Math. Model. 54 722
[33] Zhu C, Ma J and Li J 2022 Comput. Ind. Eng. 172 108517
[34] Zhang Y H and Zhang T 2022 Int. J. Bifurc. Chaos 32 2250127
[35] Zhu C and Ma J 2023 Comput. Ind. Eng. 181 109309
[36] Tao F, Zhou Y, Bian J S and Lai K K 2023 Ann. Oper. Res. 324 601
[37] Pal B, Sarkar A and Sarkar B 2023 Expert Syst. Appl. 211 118315
[38] Wang C, Pi J X, Zhou D, Tang W and Yang G H 2023 Physica A 618 128691
[39] ZhouWand Liu H Z 2023 Commun. Nonlinear Sci. Numer. Simul. 118 107029
[40] Chen J, Hou R, Xiao L, Zhang T H and Zhou Y W 2023 Chaos, Solitons and Fractals 168 113158
[41] Wei Z C, Tan W, Elsadany A A and Moroz I M 2023 Nonlinear Dyn. 111 17561
[42] Fan, R G, Lin, J and Zhu K W 2019 Physica A 528 121460
[1] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[2] Magneto-elastic dynamics and bifurcation of rotating annular plate
Yu-Da Hu(胡宇达), Jiang-Min Piao(朴江民), Wen-Qiang Li(李文强). Chin. Phys. B, 2017, 26(9): 094302.
[3] Bifurcation and chaos analysis for aeroelastic airfoil with freeplay structural nonlinearity in pitch
Zhao De-Min(赵德敏) and Zhang Qi-Chang(张琪昌) . Chin. Phys. B, 2010, 19(3): 030518.
[4] An analytical threshold voltage model for dual-strained channel PMOSFET
Qin Shan-Shan(秦珊珊), Zhang He-Ming(张鹤鸣), Hu Hui-Yong(胡辉勇), Dai Xian-Ying(戴显英), Xuan Rong-Xi(宣荣喜), and Shu Bin(舒斌). Chin. Phys. B, 2010, 19(11): 117309.
No Suggested Reading articles found!