Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 020602    DOI: 10.1088/1674-1056/ae210f
TOPICAL REVIEW — Advances in thorium nuclear optical clocks Prev  

Progresses on Th-doped materials for solid-state nuclear clock

Cheng-Chun Zhao(赵呈春)1,2, Lin Li(李琳)1,2, Shan-Ming Li(李善明)1,2, Qiao-Rui Gong(龚巧瑞)1,2, Pei-Xiong Zhang(张沛雄)1,3,†, Yin Hang(杭寅)1,2,‡, Long-Sheng Ma(马龙生)4, and Shi-Ning Zhu(祝世宁)5
1 Research Center of Laser Crystal, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China;
4 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
5 National Laboratory of Solid-State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The isomeric transition of thorium-229 (229Th), as the only known laser-accessible nuclear transition, offers the possibility for the development of a new generation of optical clocks. Solid-state nuclear optical clock based on 229Th-doped crystals or thin films has attracted much attention due to its potential advantages in high stability, miniaturization, and robustness. This paper reviews the research progress of solid-state nuclear optical clock materials, analyzes the preparation, defects, and properties of the candidate solid material systems for 229Th, explores the influence of the local crystal environment on the nuclear transition, focuses on introducing the latest research results of crystal materials such as Th-doped CaF2 and LiSrAlF6, and looks forward to the future development direction of this field. It could provide a reference for the material selection and optimization of solid-state nuclear optical clocks.
Keywords:  thorium-229      optical clock      Th-doped crystal      Th-doped film  
Received:  31 August 2025      Revised:  14 November 2025      Accepted manuscript online:  19 November 2025
PACS:  06.30.Ft (Time and frequency)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  91.60.Mk (Optical properties)  
Fund: This work was supported by Zhangjiang Laboratory (Grant No. ZJSP21A001D), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB0920000), and the National Natural Science Foundation of China (Grant Nos. 12341402 and 12341403).
Corresponding Authors:  Pei-Xiong Zhang, Yin Hang     E-mail:  pxzhang@jnu.edu.cn;yhang@siom.ac.cn

Cite this article: 

Cheng-Chun Zhao(赵呈春), Lin Li(李琳), Shan-Ming Li(李善明), Qiao-Rui Gong(龚巧瑞), Pei-Xiong Zhang(张沛雄), Yin Hang(杭寅), Long-Sheng Ma(马龙生), and Shi-Ning Zhu(祝世宁) Progresses on Th-doped materials for solid-state nuclear clock 2026 Chin. Phys. B 35 020602

[1] Tiedau J, Okhapkin M V, Zhang K, Thielking J, Zitzer G, Peik E and Schumm T 2024 Phys. Rev. Lett. 132 182501
[2] Elwell R, Schneider C, Jeet J, Terhune J, Morgan H, Alexandrova A, Tran Tan H, Derevianko A and Hudson E 2024 Phys. Rev. Lett. 133 013201
[3] Peik E and Tamm C 2003 Europhys. Lett. 61 181
[4] Peik E, Zimmermann K, Okhapkin M and Tamm C 2009 Frequency Standards and Metrology 532
[5] Campbell C J, Radnaev A G, Kuzmich A, Dzuba V, Flambaum V and Derevianko A 2012 Phys. Rev. Lett. 108 120802
[6] Peik E, Schumm T, Safronova M S, Pálffy A, Weitenberg J and Thirolf P G 2021 Quantum Sci. Technol. 6 034002
[7] Yamaguchi A, Shigekawa Y, Haba H, Kikunaga H, Shirasaki K, Wada M and Katori H 2024 Nature 629 62
[8] RellergertWG, Sullivan S T, DeMille D, Greco R R, HehlenMP, Jackson R A, Torgerson J R and Hudson E R 2010 IOP Conf. Ser: Mater. Sci. Eng. 15 012005
[9] Kazakov G A, Litvinov A N, Romanenko V I, Yatsenko L P, Romanenko A V, Schreitl M, Winkler G and Schumm T 2012 New J. Phys. 14 083019
[10] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 1993 Phys. Rev. A 47 3554
[11] Nickerson B S, Pimon M, Bilous P V, Gugler J, Beeks K, Sikorsky T, Mohn P, Schumm T and Pálffy A 2020 Phys. Rev. Lett. 125 032501
[12] L von der Wense L and Seiferle B 2020 Eur. Phys. J. A 56 277
[13] Beeks K, Sikorsky T, Schumm T, Thielking J, Okhapkin M and Peik E 2021 Nat. Rev. Phys. 3 238
[14] Alvarez R 2013 Sci. Glob. Secur. 21 53
[15] Jeet J, Schneider C, Sullivan S T, Rellergert W, Mirzadeh S, Cassanho A, Jenssen H, Tkalya E and Hudson E 2015 Phys. Rev. Lett. 114 253001
[16] Beeks K, Sikorsky T, Rosecker V, Pressler M, Schaden F, Werban D, Hosseini N, Rudischer L, Schneider F, Berwian P, Friedrich J, Hainz D, Welch J, Sterba J H, Kazakov G and Schumm T 2023 Sci. Rep. 13 3897
[17] Gong Q, Zhao C, Tao S, Hang Y, Zhu S and Ma L 2023 Adv. Opt. Mater. 11 2202327
[18] Gong Q, Tao S L, Li S, Deng G, Zhao C and Hang Y 2024 Phys. Rev. A 109 033109
[19] Gong Q, Tao S, Zhao C, Hang Y, Zhu S and Ma L 2024 Inorg. Chem. 63 3807
[20] Gong Q, Li L, Li S, Zhang S, Tao S, Deng G, Zhang P, Zhao C, Hang Y, Zhu S and Ma L 2025 Opt. Lett. 50 2290
[21] Kraemer S, Moens J, Athanasakis-Kaklamanakis M, Bara S, Beeks K, Chhetri P, Chrysalidis K, Claessens A, Cocolios T E, Correia J G M, Witte H D, Ferrer R, Geldhof S, Heinke R, Hosseini N, Huyse M, Köster U, Kudryavtsev Y, Laatiaoui M, Lica R, Magchiels G, Manea V, Merckling C, Pereira L M C, Raeder S, Schumm T, Sels S, Thirolf P G, Tunhuma S M, Van Den Bergh P, Van Duppen P, Vantomme A, Verlinde M, Villarreal R and Wahl U 2023 Nature 617 706
[22] Zhang C, von der Wense L, Doyle J F, Higgins J S, Ooi T, Friebel U U, Ye J, Elwell R, Terhune J, Morgan H, Alexandrova A, Tran Tan H, Derevianko A and Hudson E R 2024 Nature 636 603
[23] Elwell R, Terhune J E S, Schneider C, MorganWT, Tran Tan H B, Perera U C, Rehn D A, Alfonso M C, von der Wense L, Seiferle B, Scharl K, Thirolf P G, Derevianko A and Hudson E R 2025 arXiv:2506.03018
[24] Beeks K, Sikorsky T, Schaden F, Pressler M, Schneider F, Koch B N and Schumm T 2024 Phys. Rev. B 109 094111
[25] Beeks K 2022 The Nuclear Excitation of Thorium-229 in the CaF2 Environment (Ph.D. Dissertation) (Vienna: Vienna University of Technology)
[26] Weber W J 1983 Radiation Effects 70 217
[27] Nickerson B S, Pimon M, Bilous P V, Gugler J, Kazakov G A, Sikorsky T, Beeks K and Grüneis A 2021 Phys. Rev. A 103 053120
[28] Seiferle B, von der Wense L, Bilous P V, Amersdorffer I, Lemell C, Libisch F, Stellmer S, Schumm T, Düllmann C E, Pálffy A and Thirolf P 2019 Nature 573 243
[29] Sikorsky T, Geist T, Hengstler D, Kempf S, Gastaldo L, Enss C, Mokry C, Runke J and Düllmann C E 2020 Phys. Rev. Lett. 125 142503
[30] Zhang C, Ooi T, Jacob S, Kempf S, Gastaldo L, Enss C, Mokry C, Runke J and Düllmann C E 2024 Nature 633 63
[31] Higgins J S, Ooi T, Doyle J F, Zhang C, and Ye J, Beeks K, Sikorsky T and Schumm T 2025 Phys. Rev. Lett. 134 113801
[32] Jackson R A, Amaral J B, Valerio M E G, DeMille P and Hudson E R 2009 J. Phys.: Condens. Matter 21 325403
[33] Rellergert W G, DeMille D, Greco R, Hehlen M P, Torgerson J R and Hudson E R 2010 Phys. Rev. Lett. 104 200802
[34] Jeet J 2018 Search for the low lying transition in the 229Th nucleus (Ph.D. Dissertation) (Los Angeles: University of California, Los Angeles)
[35] Gouder T, Eloirdi R, Martin R L, Osipenko M, GiovanniniMand Caciuffo R 2019 Phys. Rev. Research 1 033005
[36] Osipenko M, Carrapico C, Burdeinyi D, Caciuffo R, Eloirdi R, Giovannini M, Kellerbauer A, Malmbeck R, Ripani M and Taiuti M 2024 Nucl. Instrum. Meth. A 1068 169744
[37] He L X 2023 Physics 52 476 (in Chinese)
[38] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys 118 8207
[39] Heyd, J and Scuseria G E 2004 J. Chem. Phys 121 1187
[40] Adamo C and Barone V 1999 J. Chem. Phys 110 6158
[41] Perdew J P, Ernzerhof M, Burke K 1996 J. Chem. Phys 105 9982
[42] Nickerson B S, Liao W T and Pálffy A 2018 Phys. Rev. A 98 062520
[43] Pimon M, Gugler J, Mohn P, Kazakov G, Mauser N and Schumm T 2020 J. Phys.: Condens. Matter 32 255503
[44] Pimon M, Mohn P and Schumm T 2022 Adv. Theor. Simul 5 2200185
[45] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C 2019 Metrologia 56 065004
[46] Guan M, Bartokos M, Beeks K, Fujimoto H, Fukunaga Y, Haba H, Hiraki T, Kasamatsu Y, Kitao S, Leitner A, Masuda T, Nagasawa N, Okai K, Ogake R, Pimon M, Pressler M, Sasao N, Schaden F, Schumm T, Seto M, Shigekawa Y, Shimizu K, Sikorsky T, Tamasaku K, Takatori S, Watanabe T, Yamaguchi A, Yoda Y, Yoshimi A and Yoshimura K 2026 Phys. Rev. Lett. 136 013203
[47] Dicke R H 1953 Phys. Rev. 89 472
[48] Berengut J C, Dzuba V A, Flambaum V V and Porsev S G 2009 Phys. Rev. Lett. 102 210801
[49] Rohde M and Salomon D 1983 Hyperfine Interactions 15 257
[50] Von Der Wense L and Zhang C 2020 Eur. Phys. J. D 74 146
[51] Ramakrishna J 1966 Philos. Mag. 13 515
[52] Roesch L P, Kulessa R and Horber F 1975 Phys. Status Solidi B 71 389
[53] Ooi T, Doyle J F, Zhang C, Higgins J S, Ye J, Beeks K, Sikorsky T and Schumm T 2025 arXiv:2507.01180
[54] Perera U C, Morgan H W T, Hudson E R and Derevianko A 2025 arXiv:2503.20984
[55] Morgan H W T, Terhune JE S, Elwell R, Bao Tran Tan H, Perera U C, Derevianko A, Hudson E R and Alexandrova A N 2025 arXiv:2503.11374
[56] Tkalya E V 2000 Jetp Lett. 71 311
[57] Nienhuis G and Alkemade C T J 1976 Physica B+C 81 181
[58] Rikken G and Kessener Y 1995 Phys. Rev. Lett. 74 880
[59] Hiraki T, Okai K, Bartokos M, Beeks K, Fujimoto H, Fukunaga Y, Haba H, Kasamatsu Y, Kitao S, Leitner A, Masuda T, Guan M, Nagasawa N, Ogake R, Pimon M, Pressler M, Sasao M, Schaden F, Schumm T, Seto M, Shigekawa Y, Shimizu K, Sikorsky T, Tamasaku K, Takatori S, Watanabe T, Yamaguchi A, Yoda Y, Yoshimi A and Yoshimura K 2024 Nat. Commun. 15 5536
[60] Terhune J E S, Elwell R, Tran Tan H B, Perera U C, Morgan H W T, Alexandrova A N, Derevianko A and Hudson E R 2024 arXiv: 2412.08998
[61] Schaden F, Riebner T, Morawetz I, De Col L T, Kazakov G A, Beeks K, Sikorsky T, Schumm T, V Lal K Z, Zitzer G, Tiedau J, Okhapkin M V and Peik E 2025 Phys. Rev. Res. 7 L022036
[1] Stabilizing 459 nm passive optical clock for pumping 1470 nm active optical clock
Haoyang Wu(吴浩洋), Zhiqiang Wen(温智强), Chen Wang(王琛), Zhenfeng Liu(刘珍峰), Jingbiao Chen(陈景标), Shougang Zhang(张首刚), and Deshui Yu(于得水). Chin. Phys. B, 2025, 34(11): 114201.
[2] Sympathetic electromagnetically induced transparency ground state cooling of a 40Ca+27Al+ pair in an 27Al+ clock
Chenglong Sun(孙成龙), Kaifeng Cui(崔凯枫), Sijia Chao(晁思嘉), Yuanfei Wei(魏远飞), Jinbo Yuan(袁金波), Jian Cao(曹健), Hualin Shu(舒华林), and Xueren Huang(黄学人). Chin. Phys. B, 2023, 32(5): 050601.
[3] A cryogenic radio-frequency ion trap for a 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Yao Huang(黄垚), Baolin Zhang(张宝林), Zixiao Ma(马子晓), Yanmei Hao(郝艳梅), Ruming Hu(胡如明), Huaqing Zhang(张华青), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 113701.
[4] A combined magnetic field stabilization system for improving the stability of 40Ca+ optical clock
Mengyan Zeng(曾孟彦), Zixiao Ma(马子晓), Ruming Hu(胡如明), Baolin Zhang(张宝林), Yanmei Hao(郝艳梅), Huaqing Zhang(张华青), Yao Huang(黄垚), Hua Guan(管桦), and Kelin Gao(高克林). Chin. Phys. B, 2023, 32(11): 110704.
[5] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[6] Dynamic polarizabilities of the clock states of Al+
Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2022, 31(8): 083102.
[7] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[8] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[9] Theoretical calculations of hyperfine splitting, Zeeman shifts, and isotope shifts of 27Al+ and logical ions in Al+ clocks
Xiao-Kang Tang(唐骁康), Xiang Zhang(张祥), Yong Shen(沈咏), and Hong-Xin Zou(邹宏新). Chin. Phys. B, 2021, 30(12): 123204.
[10] Cold atom clocks and their applications in precision measurements
Shao-Yang Dai(戴少阳), Fa-Song Zheng(郑发松), Kun Liu(刘昆), Wei-Liang Chen(陈伟亮), Yi-Ge Lin(林弋戈), Tian-Chu Li(李天初), and Fang Fang(房芳). Chin. Phys. B, 2021, 30(1): 013701.
[11] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[12] Study of optical clocks based on ultracold 171Yb atoms
Di Ai(艾迪), Hao Qiao(谯皓), Shuang Zhang(张爽), Li-Meng Luo(骆莉梦), Chang-Yue Sun(孙常越), Sheng Zhang(张胜), Cheng-Quan Peng(彭成权), Qi-Chao Qi(齐启超), Tao-Yun Jin(金涛韫), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2020, 29(9): 090601.
[13] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
[14] Strontium optical lattice clock at the National Time Service Center
Ye-Bing Wang(王叶兵), Mo-Juan Yin(尹默娟), Jie Ren(任洁), Qin-Fang Xu(徐琴芳), Ben-Quan Lu(卢本全), Jian-Xin Han(韩建新), Yang Guo(郭阳), Hong Chang(常宏). Chin. Phys. B, 2018, 27(2): 023701.
[15] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
No Suggested Reading articles found!