|
|
Dynamic polarizabilities of the clock states of Al+ |
Yuan-Fei Wei(魏远飞)1,3,4,†, Zhi-Ming Tang(唐志明)2,†, Cheng-Bin Li(李承斌)1,‡, Yang Yang(杨洋)2,§, Ya-Ming Zou(邹亚明)2, Kai-Feng Cui(崔凯枫)1,4, and Xue-Ren Huang(黄学人)1,4,¶ |
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-Beam Application(MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Key Laboratory of Atom Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China |
|
|
Abstract The dynamic polarizabilities of ${\rm 3s}^2\,^1{\rm S}_0$ and ${\rm 3s}{\rm 3p}\,^3{\rm P}_0^{\rm o}$ states of Al$^+$ are calculated using the hybrid configuration interaction and many-body perturbation theory method, and multiconfiguration Dirac-Hartree-Fock method in this work. Five ultraviolet magic wavelengths for the Al$^+$ clock transition ${\rm 3s}^2\,^1{\rm S}_0$-${\rm 3s3p}\,^3{\rm P}_0^{\rm o}$ are predicted. Although the suitable lasers are not available presently, the potential precision measurement on these magic wavelengths for the Al$^+$ clock transition would be used to extract the ratios of several certain transition matrix elements with high accuracy, and then help to improve the precision and reliability of the estimate of the BBR shift of the Al$^+$ clock transition. The differential dynamic polarizabilities at certain wavelengths are evaluated, which are useful to assess the ac Stark shift of the Al$^+$ clock transition frequency and helpful in the clock experiments to suppress the ac Stark shift of the clock transition as possible as it can.
|
Received: 04 December 2021
Revised: 04 February 2022
Accepted manuscript online: 25 February 2022
|
PACS:
|
31.15.ap
|
(Polarizabilities and other atomic and molecular properties)
|
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
Fund: The authors would like to thank Professor M. G. Kozlov and Dr. Y. M. Yu for the helpful assistance on the use of CI-MBPT package. This work was supported by the National Natural Science Foundation of China (Grant Nos. 11934014, 11904387, 11704076, and U1732140), the National Key Research and Development Program of China (Grant Nos. 2017YFA0304401 and 2017YFA0304402), and Technical Innovation Program of Hubei Province, China (Grant No. 2018AAA045). |
Corresponding Authors:
Cheng-Bin Li, Yang Yang, Xue-Ren Huang
E-mail: cbli@apm.ac.cn;yangyang@fudan.edu.cn;hxueren@apm.ac.cn
|
Cite this article:
Yuan-Fei Wei(魏远飞), Zhi-Ming Tang(唐志明), Cheng-Bin Li(李承斌), Yang Yang(杨洋), Ya-Ming Zou(邹亚明), Kai-Feng Cui(崔凯枫), and Xue-Ren Huang(黄学人) Dynamic polarizabilities of the clock states of Al+ 2022 Chin. Phys. B 31 083102
|
[1] Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331 [2] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [3] Safronova M S, Budker D, DeMille D, Jackson-Kimball D F, Derevianko A and Clark C W 2018 Rev. Mod. Phys. 90 025008 [4] Kozlov M G, Safronova M S, Crespo López-Urrutia J R and Schmidt P O 2018 Rev. Mod. Phys. 90 045005 [5] Huntemann H, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001 [6] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001 [7] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87 [8] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714 [9] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201 [10] Schmidt P O, Rosenband T, Langer C, Itano W M, Bergquist J C and Wineland D J 2005 Science 309 749 [11] Chou C W, Hume D B, Koelemeij J C, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 [12] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B:At. Mol. Opt. Phys. 43 202001 [13] Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502 [14] Shang J J, Cui K F, Cao J, Wang S M, Chao S J, Shu H L and Huang X R 2016 Chin. Phys. Lett. 33 103701 [15] Dalgarno A 1962 Adv. Phys. 11 281 [16] Mitroy J, Zhang J Y, Bromley M W J and Rollin K G 2009 Eur. Phys. J. D 53 15 [17] Kallay M, Nataraj H S, Sahoo B K, Das B P and Visscher L 2011 Phys. Rev. A 83 030503 [18] Safronova M S, Kozlov M G and Clark C W 2011 Phys. Rev. Lett. 107 143006 [19] Yu Y M, Suo B B and Fan H 2013 Phys. Rev. A 88 052518 [20] Rosenband T, Itano W M, Schmidt P O, Hume D B, Koelemeij J C J, Bergquist J C and Wineland D J 2006 Proceedings of the 20th European Frequency and Time Forum, March 27-30, 2006, Braunschweig, Germany, p. 289 [21] Katori H, Takamoto M, Palćhikov V G and Ovsiannikov V G 2003 Phys. Rev. Lett. 91 173005 [22] Liu P L, Huang Y, Bian W, Shao H, Guan H, Tang Y B, Li C B, Mitroy J and Gao K L 2015 Phys. Rev. Lett. 114 223001 [23] Kozlov M G, Porsev S G, Safronova M S and Tupitsyn I I 2015 Comput. Phys. Commun. 195 199 [24] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184 [25] Manakov N L, Ovsiannikov V D and Rapoport L P 1986 Phys. Rep. 141 320 [26] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249 [27] Olsen J, Roos B O, Jrgensen P and Jensen H J A 1988 J. Chem. Phys. 89 2185 [28] Sturesson L, Jönsson P and Fischer C F 2007 Comput. Phys. Commun. 177 539 [29] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2020 NIST Atomic Spectra Database (ver. 5.8),[Online]. Available:https://physics.nist.gov/asd. National Institute of Standards and Technology, Gaithersburg, MD. [30] Grant I P 1974 J. Phys. B:At. Mol. Opt. Phys. 7 1458 [31] Fischer C F 2009 Phys. Scr. T 2009 014019 [32] Ekman J, Godefroid M R and Hartman H 2014 Atoms 2 215 [33] Frisch M J, Trucks G W, Schlegel H B, et al. 2016 Gaussian 09, Revision B 01, (Gaussian, Inc., Wallingford CT) [34] Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517 [35] Chao S J, Cui K F, Wang S M, Cao J, Shu H L and Huang X R 2019 Chin. Phys. Lett. 36 120601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|